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Abstract 

Artificial Intelligence (AI) is nowadays increasingly used in the healthcare sector to support the 
prevention, early diagnosis, monitoring, and outcome prediction of non-communicable 
diseases (NCDs), which account for most deaths and disease burden across Europe. By automating 
tasks such as organ segmentation, lesion detection, disease classification, and uncertainty 
quantification, AI technologies offer the potential to reduce clinician workload, improve diagnostic 
accuracy, and enable earlier interventions. 

This report reviews the most widely adopted AI methods in medical imaging, focusing on 
segmentation, detection, and classification tasks, and assesses their technological maturity and 
readiness for clinical uptake. It illustrates key technical and systemic requirements through two 
practical use cases. The first use case is an end-to-end AI pipeline for lung cancer imaging, which 
includes full chest multi-organ segmentation from CT scans, pulmonary nodule detection and 
segmentation, longitudinal tracking of nodules, and uncertainty quantification. To support large-scale, 
privacy-preserving research and clinical deployment, this use case also develops a complete workflow 
for data anonymisation, secure upload, and web-based visualisation and validation by clinicians. The 
second use case focuses on cardiovascular disease classification, leveraging a biomechanics-
informed model that extracts physiologically meaningful features from cine cardiac MRI sequences 
to enhance explainability and trustworthiness.  

Our findings demonstrate that while AI holds strong promise to transform healthcare delivery for 
NCDs, achieving clinical deployment requires careful attention to data access, model transparency, 
and robust validation. Based on technical outcomes and operational experience, we offer concrete 
recommendations to support EU initiatives aiming at the safe, effective, and trustworthy development 
of AI in healthcare. 
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Executive Summary 

Why This Report? 

Europe is facing an increasing burden from non-communicable diseases (NCDs), such as cancer 
and cardiovascular conditions, which are responsible for 80% of the disease burden in EU 
countries and represent the leading causes of avoidable premature deaths1. Healthcare systems 
are under increasing strain from demographic changes, rising chronic disease prevalence, and 
workforce shortages. Artificial Intelligence (AI) and Deep Learning (DL) offer critical opportunities to 
improve early detection, accelerate diagnostic workflows, and personalised medicine. 

What Does The Report Focus On? 

The report concentrates on the following major AI tasks in medical imaging: 

- Segmentation – automatic annotation of anatomical structures and pathological regions, 

- Detection – identification of lesions and abnormalities, such as pulmonary nodules, 

- Classification – diagnosis and stratification of disease conditions, 

- Registration – spatial alignment of medical images across time points, modalities, or 
subjects, 

- Synthetic image generation – creation of realistic medical images using generative models 
to augment datasets or simulate rare cases. 

We consider the following two practical case studies in order to illustrate these AI applications: 

• Lung Cancer Imaging: We develop an end-to-end AI system for thoracic Computed 
Tomography (CT) imaging that performs fully automated multi-organ segmentation of the 
chest, as well as the detection, segmentation, and longitudinal tracking of pulmonary nodules. 
To enhance reliability in clinical decision-making, we integrate conformal prediction 
techniques—specifically Conformal Risk Control—to provide statistically valid, patient-level 
confidence estimates on detection sensitivity. This system operates within a fully privacy-
preserving framework, incorporating a lightweight anonymisation tool, secure cloud-based 
data transfer, and an interactive web platform designed for clinical expert review and 
validation. 

• Cardiovascular Disease Imaging: We develop a biomechanics-informed neural network 
for cardiac disease classification, leveraging DL-based image registration to estimate 
myocardial deformation from cine-cardiac Magnetic Resonance Imaging (MRI). Physiologically 
meaningful features such as local strains and biomechanical moduli are extracted to enhance 
the explainability and trustworthiness of classification results. This approach integrates 
physical priors into AI models, providing greater transparency and clinical interpretability. 

 

 

1 https://health.ec.europa.eu/non-communicable-diseases/overview_en 

https://health.ec.europa.eu/non-communicable-diseases/overview_en
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Policy Context 

The topic of this report aligns with major EU strategies on health innovation and digital 
transformation, including Europe’s Beating Cancer Plan2, the European Health Data Space 
(EHDS) Regulation3, and Horizon Europe research priorities4. It directly supports the objectives 
of the European Cancer Imaging Initiative5, the flagship initiative under Europe’s Beating Cancer 
Plan, which aims to improve access to cancer imaging data across Europe. Implemented through the 
EUropean Federation for CAncer IMages (EUCAIM) project6, which seek to build a federated, 
secure infrastructure for imaging data across Europe to foster the development of reliable and 
generalisable AI tools. The growing computational demands associated with developing and 
deploying advanced AI models, particularly for high-resolution and longitudinal imaging data, 
highlight the urgent need for strategic investment in AI-optimised infrastructure. European AI 
Factories7—sovereign high-performance computing facilities dedicated to AI research and 
application—are critical to support researchers and clinicians, ensure technological autonomy, and 
maintain Europe's competitiveness in trustworthy medical AI.  

Key Conclusions 

AI technologies in medical imaging have reached a high level of maturity, particularly in segmentation 
and detection tasks. These methods are already enhancing clinical workflows and diagnostic accuracy, 
with demonstrated benefits in lung cancer screening and cardiovascular disease classification. Their 
integration into healthcare systems reflects AI's growing relevance for addressing Europe's increasing 
burden of non-communicable diseases. 

Nonetheless, classification tasks pose greater challenges, largely because they directly inform clinical 
decision-making and therefore require a higher degree of explainability and transparency. While AI 
models often achieve strong technical performance, their lack of interpretability and limited clinical 
validation remain major obstacles to trust and adoption. The use cases presented in this report 
illustrate how integrating domain-specific knowledge and explainable AI methods can improve both 
predictive accuracy and clinical relevance. 

Persistent systemic barriers must be addressed to fully realise the potential of AI in this domain. 
These include the scarcity of large, annotated datasets, fragmented data infrastructures, and a lack 
of harmonised standards for evaluating AI performance. European initiatives such as EUCAIM and 
EHDS play a vital role in enabling secure, federated, and interoperable access to imaging data for AI 
development, while ensuring compliance with data protection regulations. In addition, the growing 
computational demands of modern AI models call for sustained investment in sovereign AI Factories 
that can provide the infrastructure necessary for trustworthy medical AI. 

 

 

2 https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-life/european-
health-union/cancer-plan-europe_en 

3 https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space-regulation-ehds_en 
4 https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-

europe_en 
5 https://digital-strategy.ec.europa.eu/en/policies/cancer-imaging 
6 https://dashboard.eucaim.cancerimage.eu/ 
7 https://digital-strategy.ec.europa.eu/en/policies/ai-factories 

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-life/european-health-union/cancer-plan-europe_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-life/european-health-union/cancer-plan-europe_en
https://health.ec.europa.eu/ehealth-digital-health-and-care/european-health-data-space-regulation-ehds_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://digital-strategy.ec.europa.eu/en/policies/cancer-imaging
https://dashboard.eucaim.cancerimage.eu/
https://digital-strategy.ec.europa.eu/en/policies/ai-factories
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Finally, trust in AI must be built through clinician-centred innovation. Active involvement of healthcare 
professionals in the design and validation of AI tools, along with a focus on usability, transparency, 
and clinical relevance, will be essential to support adoption and ensure that AI contributes 
meaningfully to improving patient care across Europe. 

Main Findings 

How Are AI Methods Used in Healthcare? 

AI and DL methods are extensively employed for image segmentation, abnormality detection, and 
disease classification. Practical use cases demonstrate successful applications in lung cancer nodule 
detection and longitudinal tracking, as well as in CVD classification using biomechanical modelling. 

What Are the Challenges? 

Deploying AI in medical imaging faces several persistent challenges. Access to large, high-quality, 
and well-annotated datasets remains limited, often due to fragmentation, privacy constraints, and 
the high cost of expert annotation. Interoperability issues across healthcare systems hinder the 
integration of AI tools into clinical workflows, while variation in data formats and annotation 
standards complicate model training and validation. In addition, AI models still lack transparency, 
making it difficult for clinicians to trust their outputs. Finally, the growing complexity of AI systems is 
driving up computational demands, highlighting the need for scalable and accessible computing 
resources to support development and deployment. 

What Are The Policy Needs? 

To enable the deployment of AI in clinical settings, several policy enablers must be addressed in 
parallel. Secure access to high-quality, annotated datasets is critical, supported by trusted processing 
environments that ensure compliance with data protection and ethical standards. Robust 
computational infrastructure is also needed to support the development, validation, and clinical 
integration of advanced AI models. Initiatives such as the AI Factories are working to meet this need. 
Interoperability remains a key requirement to ensure that AI systems can be integrated across 
different healthcare providers and national systems. This calls for harmonised data formats, 
annotation protocols, and model evaluation frameworks. Enhanced coordination between AI 
developers, clinicians, and regulators is crucial to ensure that AI tools are clinically meaningful, 
technically robust, and aligned with regulatory expectations. EU-level infrastructures such as EUCAIM 
help facilitate this coordination by supporting cross-border collaboration and data sharing in areas 
like cancer imaging, creating the necessary foundations for real-world deployment. 

Glossary 

This glossary provides definitions of key technical and regulatory terms used throughout the report. 
It is designed to help a broad audience, including policymakers, clinicians, and researchers, understand 
the terminology related to artificial intelligence and medical imaging. 

AI (Artificial Intelligence): A field of computer science that enables machines to perform tasks that 
typically require human intelligence, such as learning, reasoning, and pattern recognition. 

Annotation: The process of labelling data (e.g. medical images) with information that can be used 
to train AI algorithms, such as identifying tumours or organs. 
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Anonymisation: The process of removing or modifying personal identifiers from data to ensure 
individuals cannot be identified. 

Attention Mechanism: A component in neural networks (particularly Transformers) that allows the 
model to dynamically focus on relevant parts of the input data when making predictions. 

Bias (in AI): Systematic error in AI models that can lead to unfair or inaccurate outcomes for certain 
groups or data types. 

Benchmark Dataset: A standardised dataset used to evaluate and compare the performance of 
different AI models. 

Classification (in medical imaging): The use of AI to automatically categorise medical data or 
images into clinically relevant groups, such as diseased vs. non-diseased, or by specific disease type. 

CNN (Convolutional Neural Network): a deep learning model particularly effective for image 
analysis. 

CT (Computed Tomography): A medical imaging method using X-rays to produce detailed cross-
sectional images of the body. 

Dice Score: A statistical metric used to measure the similarity between two samples. In medical 
imaging, it is often used to evaluate the overlap between predicted and ground-truth segmentations. 

DL (Deep Learning): A type of machine learning based on artificial neural networks, especially 
effective for tasks such as image analysis. 

DICOM (Digital Imaging and Communications in Medicine): A standard for storing, transmitting, 
and handling medical imaging data. 

EHDS (European Health Data Space): An EU initiative to promote safe access to and sharing of 
health data across Member States for healthcare delivery, research, and innovation. 

EUCAIM (EUropean Federation for CAncer IMages (EUCAIM): The project implementing the 
European Cancer imaging Initiative, Europe's Beating Cancer Plan flagship, to create a federated 
infrastructure for cancer imaging data. 

xAI (Explainable AI): AI systems designed to make their operations and predictions understandable 
to humans, critical in high-stakes domains like healthcare. 

Explainability: The extent to which an AI system can provide understandable justifications for its 
outputs. This may involve ante hoc approaches, where the model is designed to be explainable from 
the outset, or post hoc techniques that generate explanations after the fact, such as highlighting 
influential input features or generating natural language rationales. Explainability is especially 
important for complex or opaque models (e.g. deep neural networks), where interpretability alone is 
insufficient. 

Feature Selection: A process used to identify the most relevant variables (features) in a dataset to 
use for building predictive models. 

FL (Federated Learning): A machine learning approach that trains algorithms across decentralised 
devices or servers holding local data, without exchanging that data. 

GAN (Generative Adversarial Network): a type of neural network used to generate synthetic data. 
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GDPR (General Data Protection Regulation): The EU regulation that governs data protection and 
privacy for individuals within the EU. 

GPU (Graphics Processing Unit): A hardware component that accelerates computation, especially 
used in deep learning to process large volumes of data efficiently. 

Ground Truth: The actual, verified data used as a benchmark to evaluate the accuracy of model 
predictions, such as expert-annotated medical images. 

Imaging Modality: A specific technique or method used to create images of the body for clinical 
analysis, e.g., MRI, CT, X-ray. 

Interoperability: The ability of different information systems and devices to exchange and use data 
in a coordinated manner. 

Interpretability: The degree to which a human can understand the internal logic of an AI system 
based on its structure and parameters. An interpretable model, such as a decision tree or linear 
regression, allows users to follow how specific inputs lead to specific outputs, without requiring 
additional tools or explanations. It is typically associated with models that are inherently transparent 
and simple enough for direct human comprehension. 

MDR (Medical Device Regulation): The EU regulation that governs the safety and performance of 
medical devices, including AI-based diagnostic software. 

MRI (Magnetic Resonance Imaging): A non-invasive imaging technique that uses magnetic fields 
and radio waves to create detailed images of organs and tissues. 

NCDs (Non-Communicable Diseases): diseases not passed from person to person, such as cancer 
and cardiovascular diseases. 

PACS (Picture Archiving and Communication System): A medical imaging technology used for 
storing, retrieving, presenting, and sharing images produced by various modalities. 

Radiomics: The extraction of large amounts of quantitative features from medical images, which 
can be used to support diagnosis or predict treatment response. 

Registration (in medical imaging): The process of aligning two or more images into a common 
coordinate system, which is crucial in longitudinal or multi-modality imaging studies. 

Segmentation (in medical imaging): The process of partitioning a medical image into different 
regions, such as organs or lesions, for further analysis. 

Synthetic Data: Data artificially generated to resemble real-world data, often used when real data 
is limited or sensitive. 

Training Data: A dataset used to teach an AI model by adjusting its internal parameters. 

Validation Data: A subset of data used to fine-tune model parameters during training to prevent 
overfitting. 

Testing Data: A separate dataset used to evaluate the performance of an AI model after training is 
completed. 
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Transformer: A neural network architecture, initially developed for natural language processing. It 
uses self-attention to process sequences and has recently been applied to imaging tasks, such as 
classification and segmentation. 

Trustworthiness: The overall reliability, safety, and ethical integrity of an AI system. A trustworthy 
system performs as intended, protects data privacy, complies with legal and regulatory standards, 
and earns the confidence of users and stakeholders. 

X-ray: A basic imaging modality using electromagnetic radiation to view the inside of the body, 
especially bones. 

US (Ultrasound): A medical imaging technique using high-frequency sound waves to produce images 
of structures within the body. 

ViT (Vision Transformer): a deep learning architecture that applies transformer models to image 
analysis. 
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1. Introduction 

In recent years, artificial intelligence (AI) and deep learning (DL) have significantly impacted various 
industries and public sectors, particularly healthcare. Europe's healthcare systems are facing 
increasing pressure due to the growing burden of non-communicable diseases (NCDs), including 
cancer and cardiovascular conditions, which are responsible for 80% of the disease burden in the EU 
countries and represent the leading causes of avoidable premature deaths across EU today. At the 
same time, a shortage of healthcare workers and under-resourced systems are putting strain on 
clinical workflows and patient care. In this context, AI and DL technologies are seen as promising 
solutions to improve prevention, diagnosis, and monitoring of NCDs, particularly through medical 
imaging. 

The integration of AI and DL in medical imaging not only holds promise for enhancing diagnostic 
accuracy but also for optimising clinical workflows, thereby addressing the critical shortage of 
healthcare workers. By automating image analysis and supporting clinical decision-making, these 
technologies can potentially reduce the workload on healthcare professionals and improve patient 
outcomes. 

As healthcare systems look to innovate, understanding and integrating these advanced technologies 
becomes crucial in transforming medical practices and addressing systemic challenges. Recent expert 
discussions, including a dedicated workshop on AI and medical imaging [1], identified several 
emerging technologies with high transformative potential. Among them, generative AI and digital 
twins8 stand out. Generative AI can help address data scarcity by producing synthetic data, while 
digital twins offer dynamic, patient-specific simulations to support personalised treatment planning 
and more precise modelling of disease progression. Experts also pointed to multimodal data 
integration and explainable AI as crucial directions for development, especially in clinical settings 
where trust and transparency are essential. As AI continues to evolve, its diverse applications in 
healthcare are attracting interest from both the public and private sectors. Investment in AI-driven 
healthcare solutions is accelerating, driven by the urgency to improve patient care and the efficiency 
of healthcare systems. 

This report was developed by the Joint Research Centre (JRC) to support the European Commission 
and its strategic policy activities in the field of AI and healthcare. It aims to provide evidence-based 
input that may inform future funding priorities under programmes such as Horizon Europe9 and the 
European Innovation Council (EIC)10, including targeted EIC Challenges and Digital Europe initiatives 
like EUCAIM. The goal of the report consists in exploring the capabilities and limitations of AI in 
healthcare and identify key policy needs. 

What Policy Problem Does It Address? 

While AI models for medical image analysis are being rapidly developed, their clinical adoption 
remains limited. This gap between innovation and implementation is due to a combination of factors: 

 

 

8 https://www.edith-csa.eu/ 
9 https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-

europe_en 
10 https://eic.ec.europa.eu/index_en 

https://www.edith-csa.eu/
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://eic.ec.europa.eu/index_en
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insufficient clinical validation11, data fragmentation12, lack of interoperability13, concerns over 
explainability14, and uneven regulatory frameworks15 [2] [3] [4]. These challenges risk slowing down 
the uptake of tools that could otherwise strengthen health systems, reduce diagnostic delays, and 
support more personalised care. 

Decisionmakers require a clearer understanding of which AI technologies are ready for use, what their 
limitations are, and how to prioritise investment and coordination efforts to accelerate safe and 
impactful deployment. 

The objectives of this report are the following: 

• Review the most relevant AI and DL methods currently used in medical image analysis, 
particularly for annotation, detection, and classification. 

• Assess their maturity and level of readiness for clinical uptake. 

• Analyse two practical use cases: one focused on the detection of lung lesions in lung CT, and 
the other on CVDs classification. 

• Identify key barriers to clinical implementation, including issues related to data access and 
anonymisation, interoperability, model evaluation, and trustworthiness. 

• Provide practical, policy-relevant recommendations that support responsible innovation and 
guide EU-funded initiatives such as the European Cancer Imaging Initiative, the European 
Health Data Space, and future EIC Challenges. 

The report is structured as follows: Section 2 outlines the policy context, including key European 
regulations and strategic initiatives supporting AI in medical imaging. Section 3 provides a technical 
overview, covering data types, core AI techniques, application areas, and current barriers and enablers 
to deployment. Section 4 presents two practical use cases, lung cancer detection and cardiovascular 
disease classification, demonstrating how AI can be applied in real-world clinical scenarios. Finally, 
Section 5 offers conclusions and policy reflections on how to advance trustworthy, effective, and 
human-centric AI in healthcare across Europe. 

 

 

11 https://cordis.europa.eu/project/id/101057699 
12 https://www.european-health-data-space.com/ 
13 https://cordis.europa.eu/programme/id/H2020_DT-TDS-05-2020 
14 https://ec.europa.eu/futurium/en/system/files/ged/ai-and-interpretability-policy-briefing_creative_commons.pdf 
15 https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai 

https://cordis.europa.eu/project/id/101057699
https://www.european-health-data-space.com/
https://cordis.europa.eu/programme/id/H2020_DT-TDS-05-2020
https://ec.europa.eu/futurium/en/system/files/ged/ai-and-interpretability-policy-briefing_creative_commons.pdf
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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2. Policy context 

The deployment of AI in medical imaging within the European Union (EU) is governed by a complex, 
increasingly integrated legal framework. Several interrelated legislative instruments aim to ensure 
that the use of AI respects fundamental rights, patient safety, and data protection, while also 
fostering innovation and cross-border collaboration. 

2.1. Regulatory Context 

2.1.1. General Data Protection Regulation (GDPR) 

The General Data Protection Regulation (GDPR)16 (Regulation (EU) 2016/679) provides the 
foundation for personal data protection across all EU sectors, including healthcare. Under GDPR, 
health data is classified as a special category of personal data, subject to stricter processing 
conditions. Consent or another lawful basis (e.g. public interest in public health or scientific research) 
is required for the use of health data in AI systems. Moreover, GDPR provides patients with rights 
such as access, rectification, erasure, and data portability. 

For AI in medical imaging, GDPR has direct implications: 

• It mandates transparency and explainability in data processing. 

• It limits the use of automated decision-making (Article 22), unless specific conditions are 
met. 

• It introduces data minimisation and purpose limitation requirements, which can be 
challenging for training AI models that require large, diverse datasets. 

While GDPR grants data portability, it primarily applies to raw personal data (e.g., imaging files). The 
European Health Data Space (EHDS) proposal would complement this by extending portability to 
inferred and processed data, such as diagnoses derived through AI algorithms. 

2.1.2. Medical Devices Regulation (MDR) 

The Medical Devices Regulation (MDR)17 (Regulation (EU) 2017/745) defines the requirements for 
software, including AI systems, that are intended for medical purposes such as diagnosis or 
monitoring. When AI algorithms are used in medical imaging and influence clinical decisions, they are 
considered medical devices and must be CE-marked. 

This includes compliance with: 

• Safety and performance requirements, including risk management and clinical 
evaluation. 

• Post-market surveillance and continuous performance monitoring. 

 

 

16 https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng 
17 https://eur-lex.europa.eu/eli/reg/2017/745/oj/eng 

https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://eur-lex.europa.eu/eli/reg/2017/745/oj/eng
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• Demonstration of robustness and generalisability in clinical settings. 

AI models used for image classification, lesion detection, or segmentation fall under MDR's scope and 
must undergo conformity assessment procedures appropriate to their risk class. 

2.1.3. Artificial Intelligence Act (AI Act) 

The AI Act18 is the EU's first horizontal regulation targeting AI systems. It categorises AI applications 
by risk level. AI systems used for medical diagnosis are considered high-risk, requiring: 

• High-quality datasets to minimise bias. 

• Transparent and explainable decision-making processes. 

• Robust monitoring, traceability, and human oversight mechanisms. 

• Compliance with existing sectoral laws, such as GDPR and MDR. 

The AI Act establishes a harmonised framework to ensure trust in AI systems used in healthcare, 
while supporting innovation. Importantly, it introduces conformity assessments and registration 
in an EU database, aiming to make high-risk AI more trustworthy and auditable. 

2.1.4. European Health Data Space (EHDS) 

The European Health Data Space (EHDS)19 is a sector-specific initiative designed to enable secure 
sharing and secondary use of health data. Once adopted, it will: 

• Guarantee patients’ access to their electronic health records across borders. 

• Establish infrastructures such as MyHealth@EU20 (for primary use) and HealthData@EU21 
(for secondary use, e.g. AI development and training). 

• Mandate interoperability and common standards, critical for cross-border AI deployment. 

• Support secondary use of health data for research and innovation, under clear governance 
frameworks and ethical oversight. 

EHDS is expected to interact with GDPR, MDR, and the AI Act, serving as a lex specialis in the health 
domain. It addresses gaps in data portability under GDPR by extending rights to inferred and 
processed data. Furthermore, it includes obligations when AI systems interoperate with EHR systems. 

 

 

 

18 https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng 
19 https://www.european-health-data-space.com/ 
20 https://www.interregeurope.eu/sites/default/files/2022-04/EW0220140ENN.en_.pdf 
21 https://ec.europa.eu/newsroom/sante/newsletter-archives/61867 

https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
https://www.european-health-data-space.com/
https://www.interregeurope.eu/sites/default/files/2022-04/EW0220140ENN.en_.pdf
https://ec.europa.eu/newsroom/sante/newsletter-archives/61867
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2.2. European Initiatives Supporting AI in Medical Imaging 

2.2.1. European Cancer Imaging Initiative 

The European Federation for Cancer Images (EUCAIM)22 is the implementation project of the European 
Cancer Imaging Initiative23, a flagship action under Europe’s Beating Cancer Plan24. Funded by the 
Digital Europe Programme25, EUCAIM aims to develop a federated and interoperable infrastructure 
for cancer imaging data across Europe. By connecting imaging repositories and clinical centres, it 
supports the creation of a user-friendly and secure platform that enables access to high-quality, 
annotated datasets. This infrastructure is designed to facilitate the development, testing, and 
validation of AI tools for cancer diagnosis, prognosis, and treatment planning, advancing personalised 
medicine and clinical research throughout the EU. 

EUCAIM is grounded in the principles of privacy, interoperability, and FAIR principles26. By connecting 
imaging repositories and clinical sites across Member States, it will provide researchers and 
developers access to high-quality, annotated datasets while ensuring compliance with the GDPR and 
future regulations under the EHDS. This infrastructure facilitates federated learning, allowing 
algorithms to be trained across distributed datasets without centralising sensitive patient data. 

EUCAIM builds upon the technical and methodological foundations laid by earlier EU-funded projects 
under the AI4HI network. In particular, the CHAIMELEON project provided a valuable blueprint by 
establishing a secure repository of harmonised and annotated imaging data and defining protocols 
for data sharing and model validation. 

2.2.2. AI4HI Network 

The AI for Health Imaging (AI4HI) network27 brought together five large-scale EU-funded projects, 
each contributing to the development of AI solutions for cancer imaging. Although most of these 
projects have now concluded, they played a critical role in: 

• Harmonising multimodal imaging data across different institutions and cancer types. 

• Designing ethical and legal frameworks for cross-border data sharing. 

• Developing and validating AI algorithms for lesion detection, segmentation, and diagnosis. 

• Promoting federated learning and privacy-preserving AI techniques. 

The AI4HI network includes: 

 

 

22 https://dashboard.eucaim.cancerimage.eu/ 
23 https://digital-strategy.ec.europa.eu/en/policies/cancer-imaging 
24 https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-life/european-

health-union/cancer-plan-europe_en 
25 https://digital-strategy.ec.europa.eu/en/activities/digital-programme 
26 https://www.go-fair.org/fair-principles/ 
27 https://ai4hi.net/ 

 

https://dashboard.eucaim.cancerimage.eu/
https://digital-strategy.ec.europa.eu/en/policies/cancer-imaging
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-life/european-health-union/cancer-plan-europe_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/promoting-our-european-way-life/european-health-union/cancer-plan-europe_en
https://digital-strategy.ec.europa.eu/en/activities/digital-programme
https://www.go-fair.org/fair-principles/
https://ai4hi.net/


 

16 

• CHAIMELEON28: Focused on lung, breast, prostate, and colorectal cancer. It created a secure, 
harmonised imaging repository and workflows for training and validating AI tools. 

• EuCanImage29: built a FAIR-compliant cancer imaging platform linking imaging with 
biological data to enable secure, multi-centre AI development, evaluation, and responsible 
data sharing for personalised oncology. 

• ProCAncer-I30: built a high-performance AI platform and the largest interoperable prostate 
cancer MRI repository to support precision care across diagnosis, metastasis detection, and 
treatment response prediction, aiming to reduce overdiagnosis and overtreatment through 
clinically validated models. 

• INCISIVE31: developed an AI-based toolbox and a federated imaging repository to improve 
cancer diagnosis, prediction, and follow-up using multimodal data, while ensuring secure, 
ethical, and interoperable data sharing across Europe. 

• PRIMAGE32: built a cloud-based platform using in-silico imaging biomarkers and tumour 
modelling to support personalised diagnosis, prognosis, and treatment follow-up for 
paediatric cancers. 

• RadioVal33: aims to validate AI tools for breast cancer treatment by assessing their accuracy, 
fairness, usability, and robustness, with the goal of delivering trustworthy, explainable, and 
clinically usable solutions that support clinicians in real-world decision-making. 

These projects addressed key challenges such as: 

• Data fragmentation and heterogeneity across centres. 

• Limited generalisability of AI models. 

• The need for rigorous clinical validation and interpretability. 

• Ensuring legal and ethical compliance for secondary use of health data. 

Together, the AI4HI projects have shaped the landscape for AI in medical imaging in Europe. Their 
insights and infrastructures now serve as a foundation for EUCAIM, which aims to consolidate and 
scale these efforts into a long-term, sustainable platform that accelerates AI innovation in cancer 
care. 

 

 

28 https://chaimeleon.eu/ 
29 https://eucanimage.eu/ 
30 https://www.procancer-i.eu/ 
31 https://incisive-project.eu/ 
32 https://www.primageproject.eu/ 
33 https://radioval.eu/ 

https://chaimeleon.eu/
https://eucanimage.eu/
https://www.procancer-i.eu/
https://incisive-project.eu/
https://www.primageproject.eu/
https://radioval.eu/
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2.2.3. Testing and Experimentation Facility for Health (TEF-Health) 

TEF-Health34 is part of the broader network of European Testing and Experimentation Facilities 
(TEFs)35, created to accelerate the development and adoption of trustworthy AI in the healthcare 
sector. TEFs are a core implementation instrument foreseen by the AI Act. 

TEF-Health helps AI technology providers bring their solutions to market faster by offering testing, 
validation, and compliance services in clinically relevant settings. This includes access to real-
world data, healthcare environments, and expert guidance to assess safety, performance, usability, 
and ethical compliance. 

Under Articles 74 and 75 of the AI Act, TEFs are explicitly recognised as tools to: 

• Support conformity assessment for high-risk AI systems in healthcare 

• Provide technical and scientific expertise to developers and notified bodies 

• Enable safe and trustworthy deployment of AI in line with EU harmonisation legislation 

By combining clinical infrastructure with regulatory alignment, TEF-Health plays a critical role 
in bridging the gap between research, regulation, and real-world adoption of AI in medical imaging 
and broader healthcare applications. 

2.2.4. AI Factories 

AI Factories36 are an emerging European initiative designed to scale the development of AI across 
sectors using high-performance computing (HPC). In the health domain, AI Factories provide the 
infrastructure needed to train and validate large-scale medical imaging models efficiently and 
ethically. 

Key contributions of AI Factories include: 

• Access to supercomputing resources for model training and experimentation 

• Support for federated and privacy-preserving AI workflows 

• Scalable pipelines that help develop robust and generalisable AI systems 

These factories complement initiatives like EUCAIM by providing the computational backbone 
necessary to handle vast, diverse imaging datasets across the EU. 

 

 

34 https://tefhealth.eu/home 
35 https://digital-strategy.ec.europa.eu/en/policies/testing-and-experimentation-facilities 
36 https://digital-strategy.ec.europa.eu/en/policies/ai-factories 

https://tefhealth.eu/home
https://digital-strategy.ec.europa.eu/en/policies/testing-and-experimentation-facilities
https://digital-strategy.ec.europa.eu/en/policies/ai-factories
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2.2.5. European Research Infrastructure Consortia (ERICs) 

Several ERICs37 play a foundational role in supporting data governance, access, and harmonisation 
across the life sciences and medical imaging ecosystem. These long-standing infrastructures ensure 
that data-driven AI research in health remains sustainable, ethical, and interoperable. 

Relevant ERICs include: 

• BBMRI-ERIC38 (Biobanking and Biomolecular Resources): Offers access to biological samples 
and associated metadata essential for linking imaging to clinical outcomes. 

• ECRIN39 (Clinical Research): Supports the design and conduct of multinational clinical trials, 
providing pathways for evaluating AI models in real-world clinical contexts. 

• Euro-BioImaging40: Facilitates access to imaging technologies and expertise across Europe, 
with emphasis on FAIR data practices and integration with AI development pipelines. 

Together, these ERICs provide the structural and legal frameworks necessary to enable secure, 
cross-border data use, making them key enablers of AI innovation in medical imaging. 

2.2.6. European Digital Infrastructure Consortia (EDICs) 

European Digital Infrastructure Consortium (EDIC)41 is an instrument made available to Member 
States under the Digital Decade Policy Programme 2030 to speed up and simplify the setup and 
implementation of multi-country projects. Eleven EU Member States are discussing a possible 
establishment of a European Digital Infrastructure Consortium (EDIC) to ensure sustain operation of 
the Cancer Image Europe platform developed by the EUCAIM project. 

EUCAIM EDIC is envisaged as a digital infrastructure facilitating access to cancer imaging and related 
clinical data for secondary use in research and innovation, from hospital networks and research 
repositories across the EU. Beyond providing access to data, it would offer a secure, reliable and 
trustworthy environment for AI experimentation, creating a framework in Europe that makes it more 
efficient to conduct multi-country collaborative projects and AI validation studies, in respect of 
applicable data protection rules. 

2.2.7. EIC Portfolio: Supporting AI-Driven Innovation in Medical Imaging  

The European Innovation Council (EIC) supports a broad and fast-growing portfolio of over 30 projects 
advancing AI-driven innovation in medical imaging. These span the entire clinical pathway—from early 
screening and diagnostics to image-guided interventions and monitoring—and cover key clinical 
domains such as cardiology, oncology, neurology, and respiratory and emergency care. Technologies 
range from AI-enhanced MRI (including portable and low-field systems), cardiac ultrasound and chest 

 

 

37 https://research-and-innovation.ec.europa.eu/strategy/strategy-research-and-innovation/our-digital-future/european-
research-infrastructures/eric_en 

38 https://www.bbmri-eric.eu/ 
39 https://ecrin.org/ 
40 https://www.eurobioimaging.eu/ 
41 https://digital-strategy.ec.europa.eu/en/policies/edic 

https://research-and-innovation.ec.europa.eu/strategy/strategy-research-and-innovation/our-digital-future/european-research-infrastructures/eric_en
https://research-and-innovation.ec.europa.eu/strategy/strategy-research-and-innovation/our-digital-future/european-research-infrastructures/eric_en
https://www.bbmri-eric.eu/
https://ecrin.org/
https://www.eurobioimaging.eu/
https://digital-strategy.ec.europa.eu/en/policies/edic
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CT analysis, to imaging biomarkers, 3D visualization for surgery, and cloud-native platforms for real-
time clinical decision support. These projects reflect a strategic effort to combine cutting-edge 
imaging technologies with advanced artificial intelligence, contributing to faster, more precise, and 
more accessible diagnosis and treatment planning. Within this broader effort, the EIC has built a 
strong group of deep tech SMEs working at the intersection of medical imaging and AI. European 
infrastructures such as EUCAIM, TEF-Health, Euro-BioImaging and BBMRI-ERIC may offer valuable 
support to these SMEs by providing access to high-quality data, clinical expertise, and environments 
for testing, validation, and integration. These platforms can play a critical role in accelerating the 
deployment of trustworthy AI solutions in clinical settings, fostering interoperability, regulatory 
alignment, and cross-border collaboration for better healthcare outcomes across Europe. 
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3. AI for Medical Imaging: Where We Are and What Comes Next 

AI has rapidly evolved into a powerful tool for medical image analysis, offering the potential to 
improve diagnostic accuracy, reduce clinical workload, and support more personalised treatment 
strategies. DL methods have demonstrated strong performance in tasks such as image segmentation 
and registration, abnormality detection, and disease classification. These capabilities are especially 
relevant for addressing the growing burden of NCDs, including cancer and cardiovascular conditions. 
The use of AI in medical imaging builds on decades of research in pattern recognition, computer 
vision, and radiology. However, the past decade has seen a shift from traditional image processing 
techniques to data-driven models that learn directly from large volumes of annotated medical 
images.  This section provides an overview of the main categories of AI methods used in medical 
imaging today. It highlights their applications across different stages of the imaging pipeline, including 
image segmentation, feature detection, and disease follow-up and classification. In addition, it 
examines recent advances in generative AI, multimodal data integration, and the use of explainable 
AI techniques to address concerns around transparency and trust. 

3.1. Types of Medical Image Data 

Medical imaging encompasses a range of modalities, each providing different types of anatomical or 
functional information to support clinical decision-making (Figure 1). These imaging techniques are 
essential across nearly every medical specialty, from initial diagnosis to treatment planning and 
monitoring. 

Magnetic Resonance Imaging (MRI): MRI leverages magnetic fields and radio waves to generate 
detailed images, primarily of soft tissues. It is particularly effective in neuroimaging, 
cardiovascular, musculoskeletal, and liver imaging. Functional and dynamic MRI techniques, such 
as fMRI and cine-MRI, enable the visualisation of tissue activity and motion, respectively. 

Computed Tomography (CT): CT combines X-ray data from multiple angles to produce cross-
sectional views of the body. It is commonly used to examine the chest, brain, lungs, and kidneys, 
offering high-resolution images that are particularly useful in trauma care, oncology, and 
cardiovascular diagnostics. 

Positron Emission Tomography (PET): PET imaging captures metabolic activity using radioactive 
tracers. It is widely employed in oncology, neuroimaging, cardiology, and for assessing infected 
tissues. When combined with CT or MRI, PET enables precise anatomical and functional correlation. 

Single-Photon Emission Computed Tomography (SPECT): Like PET, SPECT captures functional 
information using gamma-emitting radioisotopes. It is widely applied in cardiology, neurology, and 
bone imaging, offering a more accessible alternative to PET in many clinical settings. 

X-ray: X-ray imaging remains one of the most accessible and widely used modalities. It is 
fundamental in mammography, radiography, arthrography, and fluoroscopy. While less detailed 
than other techniques, its speed and availability make it ideal for routine assessments and emergency 
diagnostics. 

Ultrasound (US): US uses high-frequency sound waves to generate real-time images. It is a 
preferred choice for foetal, transrectal, breast, and abdominal imaging due to its non-invasive 
nature and absence of ionising radiation. Its portability also makes it indispensable in point-of-care 
settings. 
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Microscopy: Microscopy enables visualisation at the cellular and sub-cellular level and is central to 
haematology, cytology, and dermatology. Advances in digital and AI-assisted microscopy are 
expanding its applications in pathology, allowing automated cell classification and disease detection 
from high-resolution histological slides. 

Each imaging modality plays a complementary role in modern medicine. The integration of artificial 
intelligence in these domains promises to further enhance diagnostic precision, accelerate workflow 
efficiency, and support the transition towards personalised medicine. 

 

Figure 1: Overview of major medical imaging modalities and their primary clinical applications. 

 

Source: own elaboration. 

3.2. Fundamental AI techniques in Medical Imaging 

The application of AI to medical imaging has been largely driven by the development and success of 
machine learning (ML) and, more recently, DL approaches. These techniques enable computers to 
automatically detect patterns in complex data such as X-rays, Computed Tomography (CT) scans, or 
Magnetic Resonance Imaging (MRI), reducing the need for hand-crafted rules and enabling faster, 
often more accurate interpretations. 

At the core of many recent breakthroughs is the use of Convolutional Neural Networks (CNNs). [5] 
CNNs are designed to process visual data by learning to recognise spatial hierarchies in images, such 
as edges, shapes, and textures, making them particularly suited to tasks like tumour detection, organ 
segmentation, or identifying signs of disease. CNNs have become the foundation for most modern AI 
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models in radiology and diagnostic imaging. More recently, transformer-based models, originally 
developed for natural language processing, have begun to show promise in medical imaging by 
capturing long-range dependencies and global context within images. These models, either 
standalone or integrated with CNNs in hybrid architectures, are being explored for complex 
classification tasks and have demonstrated competitive performance in areas such as multi-organ 
analysis and pathology detection. As AI methods evolve, so do efforts to make their predictions 
interpretable and trustworthy. A growing field of research in explainable AI (xAI) is focused on helping 
clinicians understand how and why AI systems reach a given conclusion, which is particularly 
important in high-stakes domains like diagnosis or treatment planning. 

3.2.1. Convolutional Neural Networks 

In recent years, CNNs have become the backbone of AI applications in medical imaging, due to their 
ability to automatically learn hierarchical patterns and features from complex, high-dimensional 
visual data. Unlike traditional image processing methods that rely on manually designed filters, CNNs 
learn these representations directly from data, through an end-to-end training process. This capability 
is especially valuable in medical contexts, where subtle variations in tissue texture, shape, or contrast 
can indicate the presence of pathology. CNNs operate in a way that mirrors the human visual system. 
Early layers focus on low-level features such as edges or textures, while deeper layers progressively 
encode these into more abstract representations like shapes or anatomical structures. This 
hierarchical processing allows CNNs to capture spatial patterns at multiple scales, a key advantage 
when analysing detailed medical images such as MRI, CT, or X-Ray. A Convolutional Neural Network 
(CNN) is built from repeated convolutional blocks (Figure 2), each composed of a convolutional layer, 
an activation function, and a pooling layer. The convolutional layer applies small, trainable filters that 
slide across the input image to produce feature maps, capturing salient local patterns such as edges 
or textures. Each unit in the convolutional layer processes information from a restricted region of the 
image—the receptive field—enabling the network to learn spatially localised features effectively. 

Figure 2: A convolutional block. 

 

Source: own elaboration. 
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Figure 3 presents a complete CNN architecture for medical image classification, illustrating how 
input images are processed through multiple layers of convolutions and pooling, before reaching fully 
connected layers that produce the final prediction. This architecture is now widely used and adapted 
for various medical imaging tasks such as tumour classification, organ segmentation, anomaly 
detection, and image registration. Together, these capabilities make CNNs highly effective for 
automating and enhancing clinical workflows. By detecting subtle patterns that may not be visible to 
the human eye, CNNs contribute to more precise diagnostics and support clinical decision-making 
across a wide range of medical applications. 

 

Figure 3: A simple CNN for disease classification from MRI images. 

 

Source: Anwar et al. (2018) [6]. 

3.2.2. Transformer Networks 

The Vision Transformer (ViT) [7] is a DL architecture that adapts the Transformer model, originally 
developed for natural language processing [8], to image analysis. Unlike CNNs, which process local 
regions of an image using hierarchical filters, ViT divides an image into fixed-size patches and 
processes them as a sequence, enabling it to capture global image context through self-attention 
mechanisms (Figure 4). This approach has shown competitive performance to CNNs on vision tasks. 
In medical imaging, ViT models have been successfully applied to tasks such as tumour classification, 
organ segmentation, retinal disease detection, and histopathology image analysis.  
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Figure 4: ViT model overview. 

 

Source: Dosovitskiy et al. (2020) [7]. 

While ViTs have shown strong performance in medical imaging, their computational demands and 
limited scalability to high-resolution images have encouraged the development of more efficient 
models. One of the most notable advances is the Shifted Window (Swin) Transformer [9]. 

Figure 5: Swin Transformer hierarchical strategy versus ViT. 

 

Source: Liu et al. (2022) [9]. 

Swin Transformer introduces a hierarchical structure with local self-attention in shifted windows, 
allowing it to capture both fine details and global context more efficiently than ViTs (Figure 5). This 
design makes it especially suitable for medical imaging tasks such as organ segmentation, tumour 
detection, and 3D image analysis.  
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3.2.3. Multimodal Models 

Multimodal models in healthcare, particularly those integrating medical images and text, represent a 
promising frontier in clinical AI. These systems aim to replicate the integrative reasoning of human 
clinicians, who routinely synthesise diverse inputs such as radiology scans, clinical notes, and 
laboratory results to inform diagnosis and treatment. Their rapid development has been propelled by 
advances in large vision-language models (VLMs) and multimodal large language models (M-LLMs), 
which are capable of processing and reasoning across varied data modalities. By combining visual 
and textual information, multimodal models can perform complex tasks such as diagnosis, radiology 
report generation, and clinical question answering. This is especially relevant to medical practice, 
which is inherently multimodal. Unlike unimodal models that handle only one type of input, these 
systems provide responses that are contextually grounded in both image content and textual 
descriptors, enabling more nuanced and accurate decision support [10]. One of the most advanced 
applications of multimodal AI in healthcare is Medical Visual Question Answering (MedVQA). In this 
task, a system is given a medical image and a natural language question, for example, “What 
abnormality is visible on this chest X-ray?”, and it must produce a free-text answer. Recent innovations 
include the PMC-VQA dataset and the MedVInT model [11], which use over 227,000 question-answer 
pairs based on nearly 149,000 images from various modalities. These tools go beyond earlier 
multiple-choice formats by enabling open-ended responses through the alignment of pre-trained 
vision encoders with large language models via instruction tuning.  A new generation of specialised 
models has emerged to address the challenges of multimodal learning in clinical contexts. MedCLIP 
[12], for example, builds on the CLIP framework [13] by applying contrastive learning to unpaired 
radiology images and their corresponding reports (Figure 6). To mitigate the problem of false 
negative pairs, common in medical data due to overlapping visual and textual content, it introduces 
a semantic similarity loss guided by domain knowledge. This enhancement leads to improved zero-
shot performance in both classification and retrieval tasks. Med-Flamingo [14] takes a different 
approach by extending the OpenFlamingo architecture [15] to enable few-shot learning in medicine. 
Trained on interleaved sequences of medical images and text from sources like PubMed and medical 
textbooks, it supports complex reasoning tasks such as rationale generation, clinical decision-making, 
and open-ended visual question answering. 
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Figure 6: Overview of the MedCLIP framework. 

 

Source: Wang et al. (2022) [12]. 

Despite their promise, several challenges hinder widespread deployment. High-quality annotated 
multimodal datasets are still scarce, which limits generalisability and increases the risk of bias. The 
interpretability of these models remains a concern, especially in high-stakes environments like clinical 
care, and ongoing research is exploring ways to make their reasoning processes more transparent. 
Ethical and regulatory questions also remain a challenge, as these systems must ensure privacy, 
fairness, and clinical reliability. Lastly, integrating multimodal AI into clinical workflows will require 
technical interoperability and compliance with health information standards. 

3.3. Main Application Areas of AI in Medical Imaging 

AI plays a central role across multiple domains in medical imaging, supporting the entire diagnostic 
and treatment planning pipeline. Segmentation algorithms are widely used to delineate anatomical 
structures or pathological regions, often serving as a preprocessing step for other tasks. Detection 
models, typically based on object detection architectures, automatically localise abnormalities such 
as tumours, lesions, or organ anomalies. Registration methods align images across time, modalities, 
or patients, enabling longitudinal studies, image fusion, and atlas construction. Classification is used 
to assign diagnostic labels or risk scores based on features extracted from images and often relies 
on deep convolutional neural networks. Beyond these core areas, AI is increasingly being used for 
synthetic data generation, such as creating realistic anatomical variations or augmenting rare 
pathological cases using generative models.  

Figure 7 illustrates the interplay between key AI applications in medical imaging. Segmentation 
provides radiomics information for classification and can guide registration. Registration, in turn, 
supports multi-atlas segmentation (MAS) and enables biomechanical modelling that can be used for 
classification. Detection can also feed into classification through feature count. Together, these 
interconnected tasks demonstrate the integrated nature of AI workflows in clinical imaging. 
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Figure 7: Interconnected AI workflows in medical imaging. Segmentation, detection, classification, and 
registration interact closely in medical imaging pipelines. MAS: multi-atlas segmentation Feat. Count: features 
count. 

 

Source: Own elaboration. 

3.3.1. Segmentation 

DL has revolutionised medical image segmentation by enabling models to learn complex patterns 
directly from data, significantly enhancing the accuracy and efficiency of delineating anatomical 
structures. This advancement is crucial for various clinical applications, including diagnosis, treatment 
planning, and disease monitoring. Two prominent architectures have emerged in DL-based medical 
image segmentation: CNNs and ViTs. 

3.3.1.1. CNNs in Medical Image Segmentation 

One of the most influential CNN architectures in medical image segmentation is the U-Net [16] 
(Figure 8). It features a symmetric encoder-decoder structure with skip connections that bridge 
corresponding layers of the encoder and decoder paths. The encoder captures contextual information 
through successive convolutional and pooling layers, while the decoder reconstructs the segmentation 
map using upsampling operations. Skip connections facilitate the transfer of fine-grained spatial 
information, enhancing the precision of segmenting intricate structures. 



 

28 

Figure 8: U-Net architecture. 

 

Source: Ronneberger et al. (2015) [16]. 

The success of U-Net has led to the development of numerous variants and extensions tailored to 
different segmentation tasks, including adaptations for 3D data [17], improved training stability, and 
integration with residual connections [18]. Among these, nnU-Net (No New U-Net) [19] stands out for 
its robustness and adaptability. Rather than proposing a new architecture, nnU-Net provides a fully 
automated pipeline that configures and optimises a standard U-Net model based on the 
characteristics of each dataset, making it one of the most widely used tools for medical image 
segmentation today. 

3.3.1.2. Vision Transformers (ViTs) in Medical Image Segmentation 

While CNNs remain the dominant architecture in medical image analysis due to their strong inductive 
biases and ability to capture local features, their reliance on localised operations can limit their 
effectiveness in modelling long-range dependencies within images. This limitation is particularly 
evident when analysing complex structures that span large areas, such as organs with irregular 
shapes or diffuse pathological features [20]. 

To overcome this, ViTs [7] have been introduced into the medical imaging field. ViTs partition an image 
into non-overlapping patches, embed these patches linearly, and add positional encodings before 
processing them through layers of self-attention. This approach enables ViTs to model global context 
effectively, which is advantageous for tasks requiring holistic understanding of image content. 
However, ViTs often require large datasets for pretraining, as they lack the inductive biases that make 
CNNs efficient on small medical datasets. 

To combine the strengths of both architectures, hybrid models have been proposed. One prominent 
example is the Swin Transformer [9], which introduces a hierarchical architecture using shifted 
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windows. This design enables both local attention within patches and global interactions across them, 
offering a balance between computational efficiency and contextual modelling. 

Another successful hybrid approach is TransUNet [21] (Figure 9), which integrates transformer 
modules into the encoder of a U-Net architecture. CNN layers extract fine-grained local features, 
while transformers capture long-range dependencies from tokenised feature maps. The decoder then 
combines these multiscale representations using skip connections, improving both spatial precision 
and contextual understanding. TransUNet has achieved state-of-the-art performance on several 
medical image analysis benchmarks by leveraging the complementary advantages of CNNs and 
transformers. 

Figure 9: TransUNet architecture. 

 

Source: Chen et al. (2021) [21]. 

In summary, while CNN-based models such as U-Net continue to be effective for many medical image 
segmentation tasks due to their efficiency and ability to capture local features, transformer-based 
and hybrid models provide powerful tools for incorporating broader contextual information. The choice 
of architecture often depends on the specific requirements of the task, the size and diversity of the 
dataset, and available computational resources. 

3.3.2. Detection 

Object detection in medical imaging focuses on locating and classifying abnormalities, such as 
tumours, lesions, and nodules; by predicting bounding boxes around regions of interest. This task is 
crucial for applications like early cancer screening, lesion monitoring, and surgical planning, where 
precision in localisation directly impacts clinical outcomes. 

Modern object detection approaches using deep learning are typically divided into two-stage and 
single-stage detectors. Two-stage detectors first generate region proposals and then classify these 
regions, while single-stage detectors perform both tasks in a single, unified step. 

Among two-stage methods, Region Based CNN [22] (R-CNN) introduced the idea of applying CNNs to 
object proposals generated by selective search. Fast R-CNN [23] improved efficiency by processing 
the entire image with a CNN and then pooling features for each proposal. Faster R-CNN [24] further 
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advanced this framework by integrating a Region Proposal Network (RPN) directly into the model, 
enabling end-to-end training. These detectors are widely used in medical contexts where accuracy is 
prioritised, such as tumour or polyp detection. Enhancements like Feature Pyramid Networks [25] 
(FPN) were developed to improve detection across multiple object scales. FPNs use a top-down 
architecture with lateral connections to produce semantically strong features at all scales, which is 
particularly useful in medical imaging where lesions can vary greatly in size. 

Single-stage detectors offer faster inference by eliminating the region proposal step. YOLO [26] (You 
Look Only Once, Figure 10) reframes detection as a regression problem, predicting bounding boxes 
and class labels directly from images. Later iterations like YOLOv3 and YOLOv4 increased accuracy 
through deeper backbones and multi-scale prediction heads. Similarly, Single Shot Multibox Detector 
[27] (SSD) predicts objects from multiple feature maps, allowing efficient detection of objects at 
different scales. 

Figure 10: YOLO architecture. 

 

Source: Redmon et al. (2016) [26]. 

RetinaNet [28] is a single-stage detector designed to help address the class imbalance issue often 
found in dense object detection. In medical imaging, where the background often dominates the 
image and positive samples (e.g., tumours) are sparse, this imbalance leads to suboptimal training. 
RetinaNet addresses this using a novel focal loss function, which down-weights well-classified 
examples and focuses learning on hard, misclassified ones. Its effectiveness has made it a popular 
choice for tasks like lesion detection in CT or MRI where both speed and accuracy are critical. 

These detection methods have been successfully applied to a wide range of imaging modalities and 
clinical problems. For example, Faster R-CNN has been used for lymph node detection in MRI [29], 
SSD for polyp detection in gastrointestinal endoscopic images [30], and RetinaNet for lung nodule 
detection in lung CT [31]. However, detection models still face challenges in clinical deployment due 
to limited annotated data, domain shifts across scanners or institutions, and the need for explainable 
outputs. 

3.3.3. Registration 

Medical image registration is a fundamental step in many clinical workflows, enabling the alignment 
of images acquired at different times, from different patients, or across imaging modalities. This 
process supports tasks such as longitudinal disease monitoring, multi-modal image fusion, image-
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guided surgery, and radiotherapy planning [32]. Traditional registration methods rely on iterative 
optimisation of similarity metrics and transformation models. While effective, they are 
computationally demanding and sensitive to local minima, particularly in the case of large 
deformations or multi-modal images [33]. 

Deep learning has recently emerged as a powerful alternative for medical image registration, offering 
fast, data-driven models that can predict spatial transformations in a single forward pass. This 
paradigm shift allows for near real-time performance and has been shown to improve robustness 
and accuracy in various clinical settings. Unlike conventional methods that require careful hand-
crafted features and optimisation loops, deep learning approaches can learn complex deformation 
patterns directly from image data [32]. 

One of the earliest and most widely adopted frameworks in this field is VoxelMorph [34] (Figure 11), 
which uses a U-Net-like architecture [16] with an additional spatial transformation layer [35] to 
estimate deformation fields between image pairs. Trained in an unsupervised manner, VoxelMorph 
minimises image similarity losses and deformation smoothness constraints. Variants of VoxelMorph 
and other encoder-decoder architectures have been adapted to different applications, including intra- 
and inter-patient registration, as well as multi-modal and multi-resolution tasks. 

Figure 11: VoxelMorph architecture. 

 

Source: Balakrishnan et al. (2019) [36]. 

Recent developments have introduced attention-based models and transformers to better capture 
long-range spatial dependencies. For example, TransMorph [37] replaces convolutional components 
with Swin Transformer blocks [9], improving performance on complex 3D registration problems such 
as brain MRI. While these models offer advantages in capturing global context, they remain 
computationally intensive. 

A significant advancement in deep learning-based registration is the cascaded architecture proposed 
by Comte et al. (2025) [36]. Their model decomposes the deformation into a sequence of incremental 
transformations; each predicted at a different spatial resolution (Figure 12). Unlike earlier cascaded 
methods, it accumulates deformation fields rather than applying repeated warping, preserving image 
quality. A multi-resolution similarity loss ensures accurate alignment at both global and local scales. 
This approach achieves state-of-the-art results on brain MRI, outperforming methods like VoxelMorph 
and TransMorph in both accuracy and deformation smoothness. 
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Figure 12: Deep Cascaded Registration Framework. 

 

Source: Comte et al. (2025) [36] 

Deep learning-based registration has been successfully applied across a variety of anatomical regions 
and imaging modalities. In brain imaging, it supports applications such as atlas construction [38], 
population studies [39], or longitudinal monitoring of pulmonary disease progression [40]. For multi-
modal registration tasks like aligning MRI with CT or PET, deep learning approaches improve 
robustness by learning modality-invariant features, outperforming traditional intensity-based 
methods [41]. 

Despite significant progress, medical image registration continues to face important challenges. 
Domain shifts across institutions, including differences in scanners, imaging protocols, and patient 
populations, often lead to reduced model performance when applied outside the original training 
context. Moreover, the absence of ground-truth deformation fields makes validation inherently 
difficult. Standard metrics such as landmark error or anatomical overlap provide limited insight into 
whether estimated deformations are anatomically plausible. One common issue is voxel folding, 
which can be partially assessed by measuring the proportion of voxels with a non-positive Jacobian 
determinant. While this metric is widely reported, it does not fully capture the anatomical or clinical 
validity of deformation fields. To address these limitations, recent work is incorporating anatomical 
priors and biomechanical constraints to guide models toward more plausible outputs.  

3.3.4. Classification 

AI, particularly DL, has revolutionised medical image classification by improving diagnostic accuracy, 
efficiency, and scalability. CNNs have been central to this shift, offering powerful tools for analysing 
complex medical images. Innovations in CNN architecture, such as transformer hybrids [42], advanced 
activation functions, and ensemble methods, have enabled increasingly robust classification models 
across various imaging modalities [43]. However, these models still face challenges related to 
interpretability and limited applicability in low-resource clinical settings. 

A major obstacle to the widespread adoption of AI in clinical workflows is the lack of transparency in 
decision-making. The black-box nature of deep learning models raises concerns among medical 
practitioners. To address this, xAI techniques have gained traction. Methods like saliency maps, 
concept-based explanations, and inherently interpretable models aim to make classification decisions 
more understandable and trustworthy [44]. This is particularly important in high-stakes domains like 
oncology, where AI models are increasingly used for diagnosis, subtype classification, and prognostic 
assessment. Studies have shown that when supported by rigorous feature selection and ensemble 
strategies, these models can effectively complement human expertise [45]. 



 

33 

In parallel, substantial progress is being made to reduce the need for large annotated datasets. 
Transfer learning allows models trained on large image corpora to be fine-tuned on smaller medical 
datasets with strong performance. Self-supervised learning (SSL) is also gaining ground as a way to 
extract informative representations from unlabelled data, enabling better generalisation across 
clinical settings and imaging protocols [46]. 

Generative Adversarial Networks [46] (GANs, Figure 13), though primarily known for image synthesis, 
have also played a valuable role in classification. By generating synthetic examples and augmenting 
limited datasets, GANs help mitigate class imbalance and enhance the robustness of classification 
models, especially in rare disease scenarios [47]. 

Figure 13: Schematic representation of a Generative Adversarial Network (GAN). 

 

Source: https://sthalles.github.io/intro-to-gans/ 

Despite these advances, concerns about reproducibility, methodological consistency, and clinical 
validation remain. A meta-analysis of diagnostic accuracy studies highlights significant variability in 
study design and reporting, calling for standardised evaluation protocols to assess real-world 
performance [48]. 

3.3.5. Generative AI in Medical Imaging 

Generative AI has become a powerful paradigm in medical imaging, enabling new applications that 
range from data augmentation to cross-modality synthesis, disease modelling, and reconstruction. 
By learning data distributions and anatomical priors, generative models can simulate clinically 
plausible variations of medical images, enhance diagnostic accuracy, and reduce the dependency on 
large labelled datasets. The recent shift from classical GANs to more stable and expressive 
architectures such as diffusion models and transformers is further expanding the boundaries of what 
is possible in this domain. 

3.3.5.1. Image Enhancement and Reconstruction 

Generative models are increasingly used for image enhancement tasks, such as denoising [49], super-
resolution [50], and image reconstruction [51] from undersampled or corrupted scans. These 
applications are particularly impactful in MRI and CT imaging, where scan time and radiation dose are 
critical concerns. Models trained to predict high-fidelity images from low-quality inputs can support 
faster acquisitions and lower radiation exposure. For example, latent diffusion models like those 

https://sthalles.github.io/intro-to-gans/
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implemented in the MONAI Generative Models platform have demonstrated improved reconstruction 
accuracy and stability across modalities [52]. By embedding anatomical priors into the generative 
process, these models ensure that reconstructed outputs are both realistic and clinically meaningful. 
This capability is especially valuable in low-resource settings where imaging infrastructure may be 
limited or where image quality is compromised. 

3.3.5.2. Disease Progression Modelling 

Generative models can simulate the natural evolution of disease over time by generating hypothetical 
follow-up images under different scenarios. This approach has potential in personalised medicine, 
enabling visualisation of disease progression or response to treatment. Models can be conditioned on 
clinical metadata, such as patient demographics or pathology status, to simulate patient-specific 
outcomes. These techniques have been applied to predict tumour growth, simulate postoperative 
scans, or evaluate the effect of treatment protocols. By generating counterfactual image sequences, 
clinicians gain a visual aid to support decision-making and assess the efficacy of interventions. 

3.3.5.3. Synthetic Medical Image Generation 

Synthetic image generation has become an essential tool to address the lack of annotated medical 
data, enabling data augmentation, anonymisation, and support for rare disease modelling. GANs are 
the most widely used models in this field, capable of producing realistic, high-resolution images 
across various modalities. For instance, Guibas et al. (2017) [53] proposed a dual-GAN architecture 
that first generates anatomical masks and then maps them to realistic images, promoting diversity 
and photorealism. Comparative studies have shown that advanced architectures like StyleGAN [54] 
and SPADE-GAN [55] can achieve high visual fidelity and improve downstream tasks such as 
segmentation [56]. Newer approaches based on diffusion models offer improved training stability 
and diversity. Pan et al. (2023) [57] introduced a Swin Transformer-based diffusion model that 
outperformed traditional GANs across several modalities. Similarly, hybrid models like ResViT combine 
CNNs and transformers to leverage both local and global features, showing strong performance in 
Cross-modal synthesis [58], which involves generating images in one modality (e.g., CT) based on 
another (e.g., MRI), thereby enabling multimodal integration and improving accessibility. For instance, 
GAN-based frameworks have been developed to synthesise PET images from MRI, facilitating hybrid 
imaging in settings where dual-modality scanners are not available. Such models are also used to 
simulate contrast-enhanced scans from non-contrast ones, reducing patient exposure to contrast 
agents. Hybrid approaches combining GANs with transformers, like ResViT [58], allow spatially 
informed synthesis that preserves fine-grained structures and cross-modal correlations. These 
synthetic modalities can be used to augment training datasets, enable multimodal segmentation, or 
serve as input to downstream diagnostic algorithms. Although synthetic data cannot yet replace real 
datasets, it has proven valuable for training and validating AI models, particularly when combined 
with real data. Ongoing research is improving the quality, diversity, and clinical utility of synthetic 
medical images. 
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4. Barriers and Drivers 

The uptake of AI in medical imaging is shaped by both accelerating innovation and persistent practical 
challenges. Technological advances in deep learning, generative modelling, and multimodal 
integration are enabling new tools that support earlier diagnosis, improve imaging workflows, and 
reduce radiologist workload. These developments are reinforced by rising imaging volumes, clinician 
shortages, and systemic pressures on healthcare systems, which increase the demand for automation 
and decision support. Collaboration between research institutions, healthcare providers, and industry 
is driving momentum, and an increasing number of regulatory clearances are building confidence in 
clinical deployment. These trends are consistent with findings from the JRC’s recent Science for Policy 
report IMAGING THE FUTURE, which highlights emerging opportunities and structural bottlenecks in 
medical imaging and AI.  

Yet, several barriers continue to slow adoption. A core limitation is access to annotated, high-quality 
medical imaging data. Most clinically relevant AI models rely on supervised learning, which requires 
expert-labelled datasets. However, annotation is particularly time-consuming for 3D or longitudinal 
data and typically must be performed by medical imaging specialists. Since annotation is rarely part 
of routine clinical practice, this task is often relegated to research settings with limited scalability. In 
parallel, data silos, privacy constraints, and limited interoperability across institutions hinder data 
sharing and reuse. Interpretability remains a challenge for many AI models, reducing trust and limiting 
acceptance in clinical practice. While regulatory frameworks are evolving, uncertainties about 
validation requirements, liability, and cross-border compliance contribute to hesitancy. Integration 
into clinical workflows also depends on adequate technical infrastructure, clinician training, and 
cultural adaptation, all of which require resources and time. Finally, issues such as algorithmic bias 
and unequal access to AI solutions reinforce the need for inclusive design, diverse datasets, and 
transparent governance. 

Addressing these challenges will require continued coordination among AI developers, clinicians, 
regulators, and patients to ensure that AI systems are not only technically robust but also clinically 
meaningful, ethically sound, and widely accessible 

4.1. Infrastructure and Interoperability 

The effective deployment of AI in medical imaging does not rely solely on model performance; it 
critically depends on the availability of robust and interoperable infrastructures that support large-
scale, privacy-preserving, and ethically governed data access. As medical imaging generates high 
volumes of sensitive data, often fragmented across institutions and countries, the need for scalable, 
secure, and standardised infrastructures is central to both research and clinical applications. A major 
barrier is data fragmentation. Imaging data are typically confined to local Picture Archiving and 
Communication Systems (PACS) and electronic health records (EHRs), which differ widely in format, 
structure, and access policies. This fragmentation obstructs the creation of large, diverse, and 
harmonised datasets required to train and validate generalisable AI models. As highlighted by 
Kondylakis et al. (2023) [59], several European projects have made significant strides to address this 
through the development of data-sharing infrastructures within the AI4HI network, such as 
CHAIMELEON, EuCanImage, INCISIVE, ProCAncer-I, PRIMAGE, and more recently EUCAIM. These 
projects employ various data federation strategies, ranging from centralised cloud repositories to 
decentralised and hybrid approaches, all aimed at facilitating cross-institutional AI development. 
Common to all is the emphasis on interoperability, achieved through the adoption of international 
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standards such as DICOM42 for imaging data and HL7 FHIR43, SNOMED CT44, LOINC45, and OMOP-
CDM46 for clinical and metadata. For example, CHAIMELEON and ProCAncer-I use OMOP-CDM with 
oncology extensions to ensure semantic consistency in structured clinical variables, while EuCanImage 
and PRIMAGE rely on MIABIS47 extensions to standardise metadata across biobanks. These efforts in 
semantic harmonisation, quality control, anonymisation, and secure access have laid critical 
groundwork for EUCAIM, which builds directly on the experience and tools developed by these earlier 
projects to create a federated, pan-European cancer imaging platform that is FAIR (Findable, 
Accessible, Interoperable, and Reusable) by design. The goal of EUCAIM is to provide a common data 
space for cancer images, enabling researchers and clinicians to securely access, annotate, and 
analyse data across borders while ensuring compliance with European regulations. 

4.2. Privacy Preserving Learning on Medical Imaging 

Protecting patient privacy while harnessing the full potential of AI in medical imaging is a critical 
challenge. Medical imaging datasets are often sensitive and subject to strict regulatory frameworks 
such as the GDPR. Several privacy-preserving techniques have emerged to enable model development 
without compromising personal data integrity. Below, we explore the most prominent approaches, 
drawing from the current literature. 

4.2.1. Federated Learning 

Federated learning (FL) is one of the most promising approaches to decentralised model training. 
Rather than pooling data centrally, FL allows institutions to collaboratively train AI models by sharing 
only model updates or gradients, not the data itself. This paradigm reduces the risk of data breaches 
and keeps raw data within institutional firewalls. In medical imaging, FL has demonstrated robust 
performance across heterogeneous datasets. For example, Sheller et al. (2020) [60] applied FL to 
brain tumour segmentation and showed comparable performance to centrally trained models, while 
maintaining data privacy. Similarly, Kumar  et al. (2021) [61] used FL for COVID-19 diagnosis from 
chest CT scans across multiple hospitals. However, FL is not without challenges. Differences in 
imaging protocols across institutions (non-IID data) and the risk of information leakage from model 
updates still pose open research problems. 

4.2.2. De-identification and Anonymisation 

De-identification, often the first step in privacy preservation, involves removing direct identifiers (e.g., 
name, ID number) from imaging metadata. Advanced anonymisation also addresses facial features 
in head and neck scans, which can be reconstructed into identifiable 3D models. However, standard 
de-identification methods are increasingly seen as insufficient in the face of linkage attacks or re-
identification via auxiliary data sources [62]. 

 

 

42 DICOM 
43 Index - FHIR v5.0.0 
44 What is SNOMED CT | SNOMED International 
45 Home – LOINC 
46 OMOP-CDM | Documentation du SNDS & SNDS OMOP 
47 MIABIS - BBMRI-ERIC 

https://www.dicomstandard.org/
https://hl7.org/fhir/
https://www.snomed.org/what-is-snomed-ct
https://loinc.org/
https://www.documentation-snds.health-data-hub.fr/standards/omop-cdm/
https://www.bbmri-eric.eu/howtomiabis/
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4.2.3. Differential Privacy 

Differential privacy (DP) is a mathematical framework that introduces noise to data or model outputs, 
ensuring that individual data points cannot be distinguished. DP is particularly useful in settings where 
some level of data sharing is necessary, such as in model evaluation or publication. Kaissis et al. 
(2021) [63] explored the application of differential privacy in training medical imaging models and 
observed that, while it enhances privacy guarantees, it can degrade model performance if not 
carefully calibrated. This trade-off between privacy and utility remains a central concern. 

4.2.4. Homomorphic Encryption 

Homomorphic encryption (HE) allows computations to be performed directly on encrypted data. This 
enables a third party (e.g., a cloud service provider) to process sensitive medical images without ever 
accessing their unencrypted form. Despite its theoretical appeal, HE remains computationally 
intensive and is rarely used in practical clinical applications [64]. To overcome the computational 
burden of full homomorphic encryption (HE), Kaissis et al. (2021) [65] proposed a hybrid approach 
that applies HE only during communication in federated learning. In this framework, only the locally 
computed model updates are encrypted before being sent to the central server. This allows secure 
aggregation of encrypted updates without ever exposing individual patient data or raw model 
parameters. By limiting the use of HE to the communication layer rather than applying it to the entire 
training process, this method achieves a balance between security and computational feasibility. 

4.2.5. Synthetic Data Generation 

Synthetic data generation is increasingly explored as a strategy to mitigate privacy concerns in 
medical imaging. Using generative models, particularly GANs, synthetic images can be created to 
supplement or even replace real patient data for tasks such as training, validation, and algorithm 
development [66]. While synthetic data can help reduce reliance on sensitive datasets and avoid direct 
exposure of personal health information, its role in preserving privacy remains an open question. If 
synthetic images closely resemble real data distributions, there is a risk of inadvertently encoding 
identifiable patient characteristics, particularly when training data is limited or poorly anonymised 
[68]. Differential privacy mechanisms are sometimes integrated during generation to further reduce 
this risk, but they also tend to reduce image fidelity. Another critical consideration is regulatory 
acceptance. Although synthetic data is useful for pre-training or augmenting datasets, regulators 
currently require validation on real clinical data for safety and efficacy assessments. At present, 
synthetic data alone is unlikely to be accepted as a substitute for real-world evidence in approval 
processes, but it can play a valuable supporting role. 

4.3. Explainable Artificial Intelligence (xAI) in Medical Imaging 

Explainable Artificial Intelligence (xAI) plays a crucial role in the clinical adoption of AI tools for medical 
imaging, addressing the need for transparency, trust, and accountability in high-stakes healthcare 
environments. In medical imaging, where AI models often serve as decision-support systems for 
diagnoses, treatment planning, and monitoring, the ability to understand and communicate how these 
systems arrive at their predictions is fundamental to clinical validation and user acceptance. 

From a technical standpoint, xAI techniques can be broadly categorised into post-hoc and intrinsic 
methods. Post-hoc approaches are applied after model training and include techniques such as 
saliency maps, Grad-CAM, SHAP (SHapley Additive exPlanations), and LIME (Local Interpretable Model-
agnostic Explanations). These methods help visualise or approximate how input features—like image 
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pixels or clinical attributes—contribute to a model’s output. For example, Lundberg et al. (2020) [67] 
introduced TreeExplainer to provide exact SHapley values for tree-based models, demonstrating how 
many local explanations can be aggregated to form a globally interpretable structure that is faithful 
to the original model. 

However, post-hoc methods often face criticism for their potential lack of faithfulness, as they do not 
directly influence model training. This raises concerns about whether the explanations genuinely 
reflect the model’s internal logic or merely offer plausible narratives. As an alternative, intrinsic 
methods aim to make models interpretable by design, such as through attention mechanisms, 
prototype learning, or by enforcing sparse and human-readable representations. Yet, these often 
come at the cost of reduced predictive performance, particularly for complex image-based tasks. 

Furthermore, recent European policy initiatives emphasise the need for trustworthy and transparent 
AI systems, particularly in high-stakes domains like healthcare. While the European AI Act does not 
explicitly mandate explainable AI, it includes requirements for transparency, human oversight, and 
risk management in high-risk applications, which include many medical AI tools. These provisions 
contribute to a broader policy environment that encourages the development of interpretable and 
auditable AI systems. In this context, xAI techniques are increasingly explored as practical means to 
meet these expectations and support clinical accountability. 

As AI becomes increasingly embedded in radiology and digital pathology, explainability is not just a 
technical challenge but a sociotechnical imperative. Clinicians must be able to trust and understand 
AI recommendations, especially in edge cases or when results conflict with their clinical judgment. To 
this end, xAI will remain a key enabler of responsible, trustworthy, and clinically viable AI in medical 
imaging. 
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5. Selected Use Cases 

Artificial intelligence is transforming medical imaging by enabling more accurate, efficient, and 
consistent diagnostic support across diverse clinical contexts. This section presents two practical use 
cases developed by JRC.F7 that demonstrate how trustworthy AI systems can be designed to support 
diagnosis, monitoring, and decision-making in real-world healthcare settings. The first use case 
addresses lung cancer screening and follow-up, a task of high clinical relevance given the disease’s 
prevalence and mortality. The second one focuses on CVD classification using a biomechanics-
informed approach. In the lung imaging use case, the AI pipeline covers the entire clinical workflow—
from anatomical segmentation and nodule detection to longitudinal analysis and calibrated 
uncertainty estimation. The system is supported by a secure, web-based platform for data 
anonymisation and upload, AI processing, visualisation and validation. The objective is to reduce 
radiologist workload while ensuring outputs remain interpretable, robust, and aligned with clinical 
needs. In the cardiovascular domain, the second use case introduces a biomechanics-driven neural 
network applied to cine-cardiac MRI sequences. The approach leverages DL-based registration 
enhanced with Neo-Hookean strain energy regularisation to estimate biomechanically plausible 
deformations. Derived biomechanical features are then used for accurate and explainable 
classification of cardiac pathologies. By embedding physical priors into the model architecture, the 
system provides outputs that are both clinically meaningful and trustworthy. 

5.1. AI-Driven Diagnosis and Analysis of Lung Lesions 

The analysis of lung lesions in CT imaging involves several complex tasks that benefit from AI-driven 
automation, including the segmentation of anatomical structures, the detection and classification of 
pulmonary nodules, and the monitoring of their progression over time. Given the heterogeneity of 
lung diseases and the subtle visual differences between benign and malignant findings, traditional 
rule-based systems often fall short. AI models offer the potential to address these challenges by 
learning from large, annotated datasets and generalising across patient populations. This section 
outlines the technical foundations and implementation of several complementary components: 
volumetric segmentation using U-Net, lesion identification via CNNs and RetinaNet, longitudinal 
tracking through Siamese networks and deep registration, uncertainty quantification with conformal 
risk control, and clinical deployment through a secure, web-based platform. Together, these elements 
form a robust and scalable framework that supports the clinical management of pulmonary nodules 
with improved accuracy, consistency, and interpretability. 

5.1.1. Chest Anatomy Segmentation 

For the segmentation of medical images, which involves identifying individual voxels within the 
volumetric image that belong to one or more objects of interest, the most commonly used CNN 
architecture is U-Net [68], which effectively handles the problem of imbalanced classes typical of 
such tasks (e.g., very few malignant nodules and many benign lesions) and can scan an entire image 
in a single pass without losing the overall context of the image, unlike previous patch-based 
approaches. The segmentation of the entire body into 104 anatomical labels was performed using 
nnDetection [69] (Figure 14) for volumetric (3D) segmentation, which was trained with the 
Totalsegmentator [70] dataset consisting of 1,204 whole-body CT scans. 
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Figure 14: Left: Axial view of the various segmented lung lobes. Right: 3D view of the segmentation of all 
organs presents in the CT volume. 

 

Source: own elaboration. 

5.1.2. Lung Nodules Detection 

Interstitial lung diseases (ILD) constitute a heterogeneous group of over 200 lung disorders (Figure 
15) primarily affecting the lung parenchyma but may also involve airways or vascular manifestations. 
There is increasing recognition that lung tumours and some forms of ILD, particularly idiopathic 
pulmonary fibrosis (IPF), may be preceded by early radiographic findings observed in chest CT scans. 
The visual presence of these lung abnormalities is associated with a range of manifestations, such 
as reduced lung volume and the development of adenocarcinomas. Therefore, their rapid 
identification and monitoring of evolution over time are of paramount importance for patients. They 
may present with varied texture and consistency, ranging from easily identifiable solid nodules in a 
CT scan to "ground-glass" nodules, the recognition of which is much more complex. 
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Figure 15: Left: Different Lung Anomalies Visible on CT Images - from Left to Right: Normal Parenchyma 
(NP), Ground Glass (GG), Reticular (RETIC), Solid Nodule (NOD). Right: example of a solid lung nodule. 

 

Source: own elaboration. 

The field of computer vision has evolved rapidly, offering a wide range of techniques applicable to 
image classification, object detection, image retrieval, semantic segmentation, and human pose 
estimation [71]. The application of these techniques to medical scans such as CT, MRI, PET, and US is 
now a mature field. For image classification, which involves identifying the presence of an object or 
disease, CNNs and ViT [72] are widely used in image processing. In 2017, Demir et al. (2019) [73] 
developed the Inception V3 model to classify clinical images related to skin cancer exams into benign 
and malignant variants. Kang et al. (2017) [74] proposed a method to enhance the performance of 
2D CNNs using a multi-view 3D CNN for lung nodule classification incorporating spatial contextual 
information with the assistance of the 3D Inception-Resnet architecture. Lesion detection aims to 
identify specific coordinates within a 3D volume, thus involving a combination of information 
identification and localised classification. In 2016, Hwang and Kim proposed a Self-Transfer Learning 
(STL) method for detecting nodules in chest radiographs and lesions in mammography [75]. There is 
broad consensus that successful training of deep networks requires many thousands of annotated 
training samples. For this project, using the nnU-Net [19] architecture, we were able to rely on 
synthetic data augmentation techniques to utilise the available annotated samples more efficiently. 
The architecture consists of a contracting pathway to capture context and a symmetric expanding 
pathway that allows for precise localisation. 

Using images from the public LUNA16 dataset, we trained the network to recognise lung tissue and 
solid lesions as indicated in Figure 16. 
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Figure 16: Initial identification of malignant lung lesions (left) and its subsequent re-identification in follow-
up analyses (right). 

 

Source: own elaboration. 

Additionally, we employed Monai's CT lung nodule detection algorithm, which relies on RetinaNet [31] 
and is trained on the public LUNA16 dataset, for comparison purposes. The network's overall structure 
is depicted in Figure 17. Through visual examination, we noted a considerable number of false 
positives located outside the lung area. Consequently, we implemented lung segmentation to 
automatically filter out these spurious detections. 

 

Figure 17: Main features of the second nodule detection algorithm based on RetinaNet. 

 

Source: https://monai.io/model-zoo.html 

5.1.3. Follow-up of Nodules Over Time 

5.1.3.1. Siamese Neural Network 

Lung cancer follow-up is a complex task, prone to errors, and requires considerable time for clinical 
radiologists. Several lung CT scanning images taken at different times for a given patient must be 

https://monai.io/model-zoo.html
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individually inspected, searching for possible cancerous nodules. Radiologists primarily focus their 
attention on the size, density, and growth of nodules to assess malignancy. In this study, we employ 
a novel method based on a 3D Siamese neural network for the re-identification of nodules in a pair 
of CT scans of the same patient (Figure 18, Figure 19). 

Figure 18: Schema of the initial module for identifying lung lesions in the follow-up analysis. 

 

Source: Rafael et al. (2021) [76]. 

The network has been integrated into a two-phase automated pipeline to detect, match, and predict 
nodule growth given pairs of CT scans. Results on an independent test set reported a nodule detection 
sensitivity of 94.7%, a temporal matching accuracy of nodules of 88.8%, and a growth detection 
sensitivity of 92.0% with a precision of 88.4%. 

Figure 19: Example of how the nodule re-identification algorithm in the follow-up selects candidates. 

 

Source: Rafael et al. (2021) [76]. 

5.1.3.2. Cascaded Registration 

Medical image registration can also be effectively used to track the progression of pulmonary nodules 
over time. By aligning follow-up scans from different time points, registration models, such as the 
deep learning cascaded framework shown in Figure 12 enable the comparison of anatomical 
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structures with high spatial precision. As illustrated in Figure 20, when a nodule is not visible in an 
initial scan but appears in a later scan, image registration can reveal discrepancies between the 
predicted transformation and the actual follow-up image. The resulting difference map highlights the 
nodule’s appearance and growth, providing a valuable tool for early detection and monitoring 
progression. 

Figure 20: Follow-up of nodule's progression using image registration. 

 

Source: own elaboration. 

5.1.4. Conformal Risk Control for Pulmonary Nodule Detection 

Reliable deployment of AI in clinical settings requires more than strong average performance, it 
requires guarantees about how the model behaves in individual cases. In safety-critical tasks such as 
pulmonary nodule detection, where diagnostic errors can be serious and inter-rater variability is 
common, clinicians need models that are both accurate and transparent about uncertainty. 

To meet this need, we employed Conformal Risk Control [77] (CRC), a post hoc calibration method 
that wraps around any trained prediction model. CRC generates prediction sets that are guaranteed 
to contain the correct answer with a user-specified probability, ensuring a defined level of sensitivity 
per scan. This approach shifts the focus from aggregate performance metrics to patient-level 
reliability, better aligning with clinical decision-making needs. 

We applied CRC to a state-of-the-art pulmonary nodule detection model and evaluated it across four 
datasets (Set 1–4) derived from the LIDC-IDRI collection [78]. As shown in Figure 20, CRC consistently 
achieved or closely approached the target 90% sensitivity per scan, even in the more challenging 
sets. For example, it reached 91.35% sensitivity at 2.25 false positives per scan among nodules 
annotated by at least three radiologists. In contrast, a Naive thresholding strategy—which applies a 
fixed confidence cutoff—underperformed in Sets 1 and 2, failing to meet the sensitivity target due to 
lack of calibration. 
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Figure 21: Sensitivity per scan vs. false positives per scan for four LIDC-IDRI subsets. CRC (green) meets the 
90% sensitivity target more reliably than the Naive strategy (red), especially in challenging cases. 

 

Source: Hulsman et al. (2025) [81]. 

These results demonstrate that CRC not only improves sensitivity but also adapts to the difficulty of 
the data. When nodules are ambiguous or consensus among radiologists is low, CRC automatically 
produces larger prediction sets to reflect higher uncertainty. This behaviour increases transparency 
and trust, as clinicians are alerted when the model is uncertain, rather than being misled by 
overconfident predictions. While CRC introduces more false positives in some cases, especially in 
noisier datasets, it provides formal guarantees that are critical for safe deployment in healthcare. Its 
ability to balance reliability and interpretability makes it a promising solution for integrating AI into 
real-world clinical workflows, where trust and accountability are as important as accuracy. These 
findings were reported in Hulsman et al. (2025) [81]. 

5.1.5. Web Platform and Tools for Clinical Imaging Workflows 

To enable large-scale, privacy-preserving clinical research and facilitate AI-assisted 
diagnostics in lung cancer, existing tools and platforms can support secure data handling, 
annotation, and visualisation workflows. These tools are crucial for integrating AI models into research 
and clinical environments in a compliant and user-friendly manner. 
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5.1.5.1. Anonymisation 

Anonymisation is a critical step to ensure compliance with data protection standards such as the 
GDPR and the forthcoming EHDS regulation. Widely used tools and libraries, such as DCMTK48, 
GDCM49, and DICOM-anonymizer50, support automated DICOM metadata anonymisation and can be 
integrated into local clinical environments. 

These tools enable healthcare providers to: 

• Remove or replace patient identifiers from DICOM headers 

• Maintain data utility for AI training and clinical use 

• Securely prepare datasets for federated learning or centralised analysis 

Common anonymisation workflows typically involve uploading DICOM files, performing metadata 
stripping or substitution based on configurable rules, and securing data transmission using encrypted 
protocols. 

Visualisation 

For image review and annotation, tools like Orthanc, an open-source DICOM server and viewer, can 
be used to store, manage, and visualise medical imaging data, including lung CT scans, organ 
segmentations, and nodule detection results. As shown in Figure 22, Orthanc supports interactive 
visualisation of AI outputs, making it a practical choice for integrating automated segmentations and 
detection overlays in a clinical or research workflow. 

Orthanc allows users to: 

• View images in multiple planes (axial, coronal, sagittal) 

• Overlay AI-generated annotations (e.g., segmentations, nodules) 

• Enable expert review and interaction with AI outputs to ensure clinical relevance 

Such tools help bridge the gap between technical AI development and practical clinical use by enabling 
both transparency and expert oversight. 

 

 

48 https://github.com/DCMTK/dcmtk 
49 https://github.com/malaterre/GDCM 
50 https://dicomanonymizer.com/ 

https://github.com/DCMTK/dcmtk
https://github.com/malaterre/GDCM
https://dicomanonymizer.com/
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Figure 22: Online Viewer. 

 

Source: own elaboration. 

5.1.6. Discussion 

The development of an AI pipeline for lung lesion detection, longitudinal follow-up, and uncertainty 
quantification illustrates the transformative potential of artificial intelligence in enhancing early 
diagnosis and continuous monitoring of lung cancer. By integrating segmentation models, detection 
networks, Siamese-based matching algorithms, and conformal risk estimation within a unified 
framework, this approach achieves strong technical performance and demonstrates the feasibility of 
AI-assisted clinical workflows. However, it also sheds light on the broader systemic challenges that 
must be addressed to ensure that such tools are trustworthy, generalizable in diverse local 
environments, and clinically deployable at scale. A key barrier remains the limited availability of large, 
diverse, and high-quality imaging datasets for training and validation. Clinical data are often siloed 
within national health systems and hospital PACS, with limited interoperability and variable standards. 
This fragmentation hampers the development of robust AI models and increases the risk of bias and 
poor generalisation across populations, scanner types, and clinical protocols. The establishment of 
European infrastructures such as EUCAIM and EHDS is crucial in this regard. These initiatives aim to 
harmonise imaging data sharing across Member States while upholding FAIR principles, enabling 
developers to access distributed datasets through federated learning and other privacy-preserving 
technologies, without compromising patient confidentiality. In parallel, initiatives like TEF-Health and 
AI Factories provide essential support for scalable testing, validation, and training of high-risk AI 
systems in regulated environments. TEF-Health plays a critical role in implementing the AI Act, by 
offering clinically relevant settings for performance evaluation and compliance testing. AI Factories 
complement this by leveraging Europe's high-performance computing infrastructure to accelerate the 
training of large-scale medical imaging models. Beyond infrastructure and access, the legal and 
ethical frameworks that govern health data use must strike a careful balance: protecting individual 
privacy (as required under the GDPR) while enabling responsible scientific use. Promoting secure data 
sharing, anonymisation or pseudonymisation, and secured processing environments, along with 
streamlined ethical approval pathways, is necessary to reduce friction for AI research and clinical 
innovation. Finally, while the models developed here show high average performance, trustworthy AI 
also requires transparency, interpretability, and calibrated risk communication. Techniques such as 
conformal risk control offer individual-level confidence guarantees, which are critical in clinical 
contexts where uncertainty must be explicitly communicated. Broader adoption of such methods, 
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alongside mechanisms for expert oversight and iterative validation, will be essential to integrate AI 
safely into clinical decision-making. In conclusion, this work highlights both the technical readiness of 
AI for lung cancer applications and the systemic conditions needed to support its transition into real-
world use. Delivering trustworthy, clinically accepted AI solutions will depend not only on algorithmic 
excellence but also on a coordinated European effort to build the legal, infrastructural, and ethical 
foundations for equitable and sustainable deployment. 

 

5.2. Biomechanics-Driven Neural Network for Cardiovascular Disease 
Identification 

CVDs are the leading cause of mortality worldwide, accounting for nearly 18 million deaths annually 
[79]. Traditional diagnostic methods based on manual interpretation of medical images are time-
consuming, error-prone, and variable. DL approaches, particularly CNNs, have significantly advanced 
automatic classification of CVDs, offering rapid and consistent analysis. Cine-cardiac MRI, which 
captures dynamic heart motion, is especially valuable for AI applications. The ACDC dataset [80] 
serves as a benchmark for automated classification of five cardiac pathology categories. Previous 
studies achieved strong results using radiomics or anatomical segmentation features [81] [82] [83] 
but largely ignored the dynamic and biomechanical properties of cardiac tissues. Deformable image 
registration offers a way to bridge this gap by estimating non-linear tissue motion, and the 
incorporation of biomechanical priors such as Neo-Hookean elasticity leads to more physiologically 
plausible deformation fields. Recent approaches [84] [85] have demonstrated the benefits of 
biomechanics-informed registration for analysing cardiac dynamics. Building on these ideas, this 
study proposes a novel method that extracts biomechanical parameters from cine-MRI sequences 
using a biomechanics-constrained DL registration model. These features, combined with conventional 
radiomics, enable more accurate and explainable classification of cardiac diseases, enhancing both 
performance and clinical trustworthiness. 

5.2.1. Deep Cascaded Registration 

The registration strategy we use is based on Comte et al. (2025), who proposed a cascaded deep 
learning model for the registration of 3D medical images [36]. Unlike traditional multi-stage 
approaches, where sequential CNNs progressively refine deformations, the cascaded model processes 
inputs simultaneously through stacked networks, computing the loss only at the final output to 
encourage collaborative optimisation. 

The registration task seeks a spatial transformation 𝜑𝜑 ∶  ℝ3 →  ℝ3 that warps a moving image 𝑋𝑋𝑚𝑚𝑚𝑚  
to align with a fixed image 𝑋𝑋𝑓𝑓𝑓𝑓 ,  

so that: 

𝑋𝑋𝑤𝑤𝑤𝑤  =  𝑋𝑋𝑚𝑚𝑚𝑚  ∘  𝜑𝜑 ≈  𝑋𝑋𝑓𝑓𝑓𝑓 

At each cascade level, a network predicts a deformation field  𝜑𝜑𝑖𝑖 and the cumulative transformation 
is obtained by summing the intermediate fields: 

𝑋𝑋𝑤𝑤𝑤𝑤,𝑛𝑛 =  𝑋𝑋𝑚𝑚𝑚𝑚  ∘  𝛴𝛴𝑖𝑖=1𝑛𝑛  𝜑𝜑𝑖𝑖 

The model optimises a loss combining an image similarity term and a regularisation term, based on 
the negative local normalised cross-correlation (NCC) between the warped and fixed images: 
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ℒ𝑠𝑠𝑖𝑖𝑚𝑚  =  − 𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋𝑓𝑓𝑓𝑓 ,𝑋𝑋𝑤𝑤𝑤𝑤) 

This loss is computed for patches of varying sizes, promoting image similarity at multiple scales. 

5.2.2. Biomechanical Regularisation 

In DL-based medical image registration, deformation fields are often regularised by penalising the 
sum of their local gradients. This is typically expressed as the integral or sum over the domain of the 
squared gradient norm of the deformation field ∑ ||𝛻𝛻𝜑𝜑(𝑥𝑥)||². This approach ensures that the 
predicted transformations are smooth and invertible. However, it does not consider the mechanical 
properties of biological tissues, particularly cardiac tissue, which exhibits nonlinear and anisotropic 
behaviour under stress. As such, the deformations produced may lack physiological realism and be 
difficult to interpret in a clinical setting. To address this limitation, a biomechanical regularisation 
strategy based on Neo-Hookean strain energy is introduced. This approach models the myocardium 
as a hyperelastic material, allowing for the description of large, nonlinear deformations. The 
transformation of each tissue voxel is defined by a function φ(x), which maps its position in the 
reference configuration to a new location in the deformed configuration. The deformation gradient 
tensor F is defined as the spatial derivative of φ with respect to x: 

𝑭𝑭 =  𝜕𝜕𝝋𝝋 / 𝜕𝜕𝒙𝒙 

From this, the right Cauchy-Green deformation tensor is computed as: 

𝑪𝑪 =  𝑭𝑭ᵀ𝑭𝑭 

This tensor characterises local stretch without sensitivity to rigid-body motion. The volume change 
induced by the deformation is captured by the determinant of F: 

𝑱𝑱 =  𝑑𝑑𝑑𝑑𝑑𝑑(𝑭𝑭) 

The strain energy density of a Neo-Hookean material depends on both the shape and volume changes 
of the tissue. It is given by the following expression: 

𝛷𝛷(𝜑𝜑) =  
𝜇𝜇
2

 �𝐼𝐼1𝐶𝐶  𝐽𝐽− 23 −  3� +  
𝜅𝜅
2

(𝐽𝐽 −  1)² 

 

Here, 𝜇𝜇 and 𝜅𝜅 represent the shear and bulk moduli of the tissue, 𝐼𝐼1𝐶𝐶 is the first invariant of the tensor 
C (i.e., the trace of C), and J accounts for the local volumetric expansion or compression. The term 
involving 𝐼𝐼1𝐶𝐶 penalises distortional changes, while the term involving J penalises volume changes, 
thus allowing for the independent control of tissue stretching and compression. 

This biomechanical regularisation term is added to the overall training objective of the model. The 
full loss function is: 

ℒ =  ℒ𝑠𝑠𝑖𝑖𝑚𝑚 +  𝜆𝜆 .𝛷𝛷(𝜑𝜑) 
 

where ℒ𝑠𝑠𝑖𝑖𝑚𝑚 is a similarity loss, often based on normalised cross-correlation between the fixed and 
warped images and 𝜆𝜆 is a regularisation parameter that controls the influence of the biomechanical 
prior. By incorporating this physically grounded energy model into the learning objective, the 
registration framework produces deformation fields that are both mathematically stable and 
physiologically plausible (Figure 23). This enhances not only the numerical robustness of the model 
but also its explainability and clinical trustworthiness, as the transformations can be interpreted in 
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terms of realistic tissue mechanics. This makes the method particularly suitable for cardiac 
applications, where the deformation patterns of the myocardium carry diagnostic significance.  

Figure 23: Overview of the biomechanics-driven framework. 

 

Source: own elaboration. 

5.2.3. Segmentation with Multi-Frame Propagation 

We compare the segmentation results obtained using two label propagation techniques in Table 1. 
The first is the direct label propagation approach, in which segmentation labels are transferred 
directly between the End-Systole (ES) and End-Diastole (ED) frames. The second is the multi-frame 
propagation technique, where labels are sequentially propagated from ED to adjacent frames, and all 
resulting labels are repropagated back to the ED frame. A local weighted voting strategy is then 
applied to merge the propagated labels, improving robustness and consistency across the sequence 
(Figure 24). 

Table 1: Average Dice scores on the three anatomical labels at ES and ED using registration ED to ES frames, 
and vice versa, multi-frame registration, and nnU-Net. 

 ES ED 
Method LV RV MYO LV RV MYO 
nnU-Net 0.968 0.946 0.902 0.931 0.899 0.919 
Registration 0.970 0.878 0.920 0.913 0.804 0.870 
Multi-Frame Registration 0.974 0.912 0.960 0.956 0.857 0.922 

Source: own elaboration 
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Figure 24: Segmentation using multi-frame propagation. 

 

Source: own elaboration. 

5.2.4. Classification of CVDs 

A comprehensive set of features is extracted from the locally estimated biomechanical parameters, 
shear modulus 𝜇𝜇 and bulk modulus 𝜅𝜅, computed at both End-Diastole (ED) and End-Systole (ES). For 
each of six anatomical regions (Figure 25), we derive statistical descriptors including the mean, 
standard deviation, and the 10th and 90th percentiles. This biomechanical feature set is further 
complemented with volumetric measurements obtained from the ground-truth segmentations at ED 
and ES. To identify the most informative features for cardiovascular disease classification, a greedy 
forward-backward feature selection strategy is employed. 

Figure 25: Labels used to compute the local biomechanical features. 

 

Source: own elaboration. 
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To evaluate the contribution of biomechanical features to disease classification, we constructed a 
feature pool comprising values derived from local estimates of the shear modulus 𝜇𝜇, bulk modulus 
𝜅𝜅, the local modulus of the deformation field 𝜑𝜑, and volumetric measurements. The performance of 
five different classification algorithms was assessed: logistic regression, multilayer perceptron, 
support vector classifier, random forest, and nearest neighbour, each combined with a feature 
selection procedure. The classification accuracies achieved by each method are reported in Table 2, 
with logistic regression reaching the highest performance, attaining an accuracy of 0.98 on the 
training set and a perfect 1.0 on the test set. 

Table 2: Classification accuracy over the train and test set for different classification methods. 

Classifier Accuracy train Accuracy test 
Logistic Regression 0.98 1 
Multi-Layer Perceptron 0.91 0.96 
Support Vector Classifier 0.90 0.92 
Random Forest 0.89 0.92 
Nearest Neighbour 0.87 0.88 

Source: own elaboration 

Figure 26 displays the confusion matrices for the classification task across the five cardiac disease 
categories. These matrices provide a detailed assessment of the model’s performance by illustrating 
how accurately each case is assigned to its correct class. On the training set, the model demonstrates 
strong performance, with only two misclassifications observed. Specifically, one case of dilated 
cardiomyopathy (DCM) is incorrectly classified as myocardial infarction (MINF), and one instance of 
hypertrophic cardiomyopathy (HCM) is misclassified as normal (NOR). Nevertheless, the model 
achieves perfect classification on the independent test set, correctly identifying all cases.  

Figure 26: Confusion matrices of the classification on the training set and testing set. 

 

Source: own elaboration. 

Figure 27 examines the generalisation ability of the classification model by showing how accuracy 
varies with different training set sizes. Using the selected feature set and a Logistic Regression 
classifier, fifty random subsets were generated for each training size, and the average classification 
accuracy was computed. The solid line represents the mean accuracy, while the shaded area shows 
one standard deviation. The results demonstrate that the model maintains strong performance even 
with limited data, achieving accuracy above 0.7, 0.8, and 0.9 for training sets of 20, 30, and 60 
subjects, respectively. The narrow variability, particularly at larger training sizes, indicates that the 
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model is stable and reliable. This robustness highlights its potential for clinical deployment, where 
data availability may be variable and resilience across patient populations is essential. 

Figure 27: Accuracy as a function of the training set size. 

 

Source: own elaboration. 

5.2.5. Discussion 

The second use case investigated the integration of biomechanical modelling into AI-based 
classification of cardiovascular diseases (CVDs), offering a novel and promising direction for building 
interpretable and trustworthy AI systems in medical imaging. While conventional image-based deep 
learning approaches can deliver strong predictive performance, they often function as opaque “black 
boxes”, posing challenges for clinical adoption, particularly in high-stakes settings where transparency 
and accountability are paramount. This study addresses the challenge by incorporating a 
biomechanics-informed regularisation scheme based on the Neo-Hookean strain energy model into 
the AI framework. By constraining the learned deformation fields to align with the physical behaviour 
of cardiac tissues, the model produces features that are not only discriminative but also 
physiologically meaningful. Compared to models using standard volumetric features, the inclusion of 
these biomechanical quantities leads to significantly improved classification accuracy. Crucially, this 
approach enhances the explainability of AI predictions. Instead of relying on abstract latent features, 
clinicians can interpret the model’s outputs using familiar mechanical concepts, such as tissue 
stiffness, strain patterns, and regional deformation. This physical interpretability builds clinical trust, 
enables expert validation, and facilitates dialogue between automated analyses and medical 
judgment. The use case reinforces that explainability and trustworthiness are essential, for the 
successful integration of AI into cardiovascular diagnostics. High accuracy alone is not sufficient, 
clinicians must be able to understand, interrogate, and act upon AI outputs with confidence. By 
blending data-driven learning with domain-specific physical priors, the method provides a tangible 
path forward for developing clinically viable AI tools. Looking ahead, further work should focus on 
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validating these models across larger, more heterogeneous datasets and diverse clinical settings to 
ensure generalisability. Equally important is the development of user-centric interfaces that present 
biomechanical features in ways that are accessible, actionable, and seamlessly integrated into 
existing clinical workflows—maximising both their interpretive value and practical utility. This 
approach reflects a growing recognition—across research, policy, and clinical communities—that 
trustworthiness must be a foundational principle in the development of medical AI. Beyond raw 
performance, AI systems must demonstrate explainability, robustness, ethical soundness, and respect 
for human oversight. 

These values are strongly echoed in the European approach to AI in healthcare, which promotes the 
development of technologies that are: 

• Transparent and interpretable, enabling expert review and patient trust 

• Technically and clinically validated, supporting safe and effective deployment 

Ultimately, this use case underscores that the path to real-world impact is not only through 
algorithmic advances, but through a broader commitment to trust, safety, and usability—core 
principles that are increasingly central to the European vision for AI in health. Future efforts should 
continue to build on this foundation, advancing AI that is not only powerful, but also clinically 
meaningful, ethically grounded, and designed with human users in mind. 
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6. Conclusions 

This report reviewed the current landscape of AI in medical imaging, analysing recent progress 
and remaining challenges across key computational tasks such as segmentation, detection, 
classification, registration, and synthetic data generation. It also situated these developments within 
the broader European policy landscape, focusing on regulatory instruments (GDPR, MDR, AI Act, 
EHDS) and EU initiatives including the European Cancer Imaging Initiative, TEF-Health, AI Factories, 
and ERICs and the EIC portfolio on AI-driven innovation in medical imaging. To ground the analysis in 
practice, the report examined two selected use cases: one on lung cancer screening and 
longitudinal monitoring, the other on cardiovascular disease (CVD) classification using 
biomechanics-informed neural networks. These cases illustrate how AI methods can be 
tailored to real clinical workflows, offering not only technical improvements but also insights into 
the systemic conditions necessary for trustworthy deployment. 

In the first use case, a comprehensive pipeline was developed for lung cancer screening and follow-
up. It combined multiple steps: chest segmentation, lung nodule detection, longitudinal follow-up, and 
conformal prediction to quantify uncertainty. This approach demonstrates that early diagnosis and 
follow-up of pulmonary nodules can benefit significantly from AI when multi-step image analysis 
tasks are integrated and clinically validated. The case also underscored the need for secure and 
scalable infrastructure to manage longitudinal CT data. Overall, this use case demonstrated: 

• The potential of AI to support early diagnosis and longitudinal monitoring when image 
analysis tasks are integrated into a single, clinically validated workflow. 

• The value of uncertainty quantification for enabling risk-based clinical decisions, in line 
with the AI Act’s requirements for transparency and traceability in high-risk medical 
applications. 

• The importance of secure and scalable infrastructure to manage medical imaging data, 
particularly to support the secondary use of data for research and innovation. This will be 
facilitated by the European Health Data Space (EHDS), which aims to enable the GDPR-
compliant and trustworthy reuse of health data across borders. 

In the second use case, a hybrid deep learning model was used to classify cardiovascular 
diseases based on biomechanical features derived from image registration. Registration 
techniques were not only used for spatial alignment, but also to estimate realistic deformation fields. 
These were regularised using a neo-Hookean energy model to produce interpretable biomechanical 
biomarkers. This case illustrated: 

• The potential of hybrid approaches that integrate deep learning with domain knowledge 
to enhance both model performance and clinical relevance. 

• How grounding AI outputs in physiological parameters can facilitate transparency and 
support human oversight, helping clinicians interpret and trust model predictions in practice. 

Together, the use cases and broader analysis point to five enabling conditions for scaling AI in medical 
imaging across Europe: 

• Hybrid and domain-informed approaches offer a promising path towards clinically 
meaningful and interpretable AI tools. Integrating medical knowledge, physics-based priors, 
and uncertainty estimation can enhance trust and relevance in real-world settings. 
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• Transparency and clinician oversight should be embedded from the start. User-centred 
design and interactive interfaces can support the safe use of AI by aligning tools with clinical 
workflows and decision-making practices. 

• Federated infrastructure and annotated data access remain critical bottlenecks. 
Scalable, secure, and standardised systems for sharing annotated imaging data are essential 
to train robust and generalisable models while preserving privacy. European projects and 
initiatives such as the European Cancer Imaging Initiative, and the EHDS regulation aim to 
address these needs by enabling cross-border access to imaging data while upholding GDPR 
compliance. 

• Interoperability and standardisation must be reinforced across data formats, annotation 
protocols, and model evaluation. Aligning with EU-wide and international frameworks will 
support reproducibility and regulatory consistency.  

• Ecosystem coordination and long-term investment are needed to translate innovation 
into deployment. Efforts like TEF-Health, AI Factories, ERICs and the proposed EUCAIM EDIC 
offer the infrastructure and governance needed to coordinate AI development for medical 
imaging, validation, and deployment across Europe. They provide frameworks for supporting 
collaborative research, development and validation, as well as controlled environments for 
regulatory testing and offer a foundation for long-term public investment. Sustained 
coordination between research, policy, and clinical domains will be essential to build a 
cohesive and trustworthy AI ecosystem. 

In summary, AI in medical imaging holds transformative potential for early diagnosis, 
personalised treatment, and efficient healthcare delivery. Yet, the path forward is not purely 
technical. It requires a broad and integrated strategy: grounded in trust, supported by 
infrastructure, aligned with regulation, and guided by clinical needs. Europe’s continued 
investment in federated infrastructures, regulatory foresight, and human-centred AI design puts 
it in a strong position to lead in the development of safe, effective, and inclusive medical AI 
solutions. 
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