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Foreword

This report is published in the context of Al Watch, the European Commission’s knowledge
service to monitor the development, uptake and impact of Artificial Intelligence (Al) for
Europe, launched in December 2018.

Al has become an area of strategic importance with the potential to be a key driver of
economic development. Al also has a wide range of potential social implications. As part of
its Digital Single Market Strategy, in April 2018 the European Commission put forward a
European strategy on Al in its Communication “Artificial Intelligence for Europe”
COM(2018)237. The aims of the European Al strategy announced in the communication are:

— To boost the EU’s technological and industrial capacity and Al uptake across the economy,
both by the private and public sectors

— To prepare for socio-economic changes brought about by Al
— To ensure an appropriate ethical and legal framework.

Subsequently, in December 2018, the European Commission and the Member States
published a “Coordinated Plan on Artificial Intelligence”, COM(2018)795, on the development
of Al in the EU. The Coordinated Plan mentions the role of Al Watch to monitor its
implementation.

Al Watch monitors the European Union’s industrial, technological and research capacity in Al;
Al-related policy initiatives in the Member States; uptake and technical developments of Al;
and Al impact. Al Watch has a European focus within the global landscape. In the context of
Al Watch, the Commission works in coordination with the Member States. Al Watch’s results
and analyses are published on the Al Watch Portal (https://ec.europa.eu/knowledge4policy/ai-
watch_en).

From the in-depth analyses of Al Watch, we will be able to better understand the European
Union’s areas of strength and those areas where investment is needed. Al Watch will provide
an independent assessment of the impacts and benefits of Al on growth, jobs, education and
society.

Al Watch has been developed by the Joint Research Centre (JRC) of the European Commission
in collaboration with the Directorate-General for Communications Networks, Content and
Technology (DG CONNECT).

This report addresses the following objectives of Al Watch:

— Reporting on the technical capabilities, functionalities and performances of major Al-
based systems (reported in the literature, by projects, by companies developing products
and services, etc.).

— Monitor and benchmark the Al capacities based on reports in the literature and not direct
testing of Al technology. Developing an overview and analysis of the Al ecosystem.


https://ec.europa.eu/knowledge4policy/ai-watch_en
https://ec.europa.eu/knowledge4policy/ai-watch_en
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Abstract

Artificial intelligence (Al) offers the potential to transform our lives in radical ways. However,
we lack the tools to determine which achievements will be attained in the near future. Also,
we usually underestimate which various technologies in Al are capable of today. Certainly,
the translation from scientific papers and benchmark performance to products is faster in Al
than in other non-digital sectors. However, it is often the case that research breakthroughs
do not directly translate to a technology that is ready to use in real-world environments. This
report constitutes the second edition of a study proposing an example-based methodology
to categorise and assess several Al technologies, by mapping them onto Technology
Readiness Levels (TRL) (e.g., maturity and availability levels). We first interpret the nine TRLs
in the context of Al and identify different categories in Al to which they can be assigned. We
then introduce new bidimensional plots, called readiness-vs-generality charts, where we see
that higher TRLs are achievable for low-generality technologies focusing on narrow or
specific abilities, while high TRLs are still out of reach for more general capabilities. In an
incremental way, this edition builds on the first report on the topic by updating the
assessment of the original set of Al technologies and complementing it with an analysis of
new Al technologies. We include numerous examples of Al technologies in a variety of fields
and show their readiness-vs-generality charts, serving as a base for a broader discussion of
Al technologies. Finally, we use the dynamics of several Al technologies at different generality
levels and moments of time to forecast some short-term and mid-term trends for Al.



Executive summary

This report is a revision of the first edition of the assessment of Technology Readiness Levels
for Artificial Intelligence published in December 2020 (Martinez-Plumed et al., 2020d;
Martinez-Plumed et al, 2021). It updates the assessment of the original set of Al
technologies and complements it with an analysis of new Al technologies.

We still lack the capacity to predict what capabilities and products will become a reality even
in the short term, a problem that is not unique to Al but to any technology, especially digital
technologies. We are not always successful, even in hindsight, in understanding why some
expectations are not met, and why some Al technologies have limitations or what kinds of
new technologies may replace them. Moreover, although many so-called breakthroughs in Al
are associated with highly cited research papers or good performance in some particular
benchmarks, research breakthroughs do not directly translate into a technology that is ready
to use in real-world environments.

In this paper, we used the novel example-based methodology introduced in (Martinez-Plumed
et al., 2020d, 2021) to categorise and assess several Al R&D Technologies, by mapping them
onto Technology Readiness Levels (TRL) (representing their maturity and availability). We first
interpret the nine TRLs in the context of Al and identify several categories in Al to which they
can be assigned. The selection of the new Al technologies is representative but not
exhaustive: it has been decided in agreement with various experts in Al technologies and is
based on our own experience and knowledge in the area regarding their relevance and
“general use”. Furthermore, for some specific cases, we have also considered the associated
levels of research activity.

We then use the readiness-vs-generality charts, which are bidimensional plots in which we
define the degree of generality (in terms of being able to function over many diverse specific
domains and tasks) expected for a particular technology on the x-axis vs the readiness level
(the TRLS) on the y-axis. Generality is a key element to be recognised, apart from the
readiness levels since Al is a field that develops (cognitive) capabilities at different generality
levels. Consequently, we need to assign readiness levels according to different levels of
generality: a technology that is specialised for a very specific, controlled domain may reach
higher TRL than a technology that has to be more general-purpose in terms of it not-being
restricted to specific tasks or scenarios. Therefore, for each technology we define the
different levels of capabilities based on a comprehensive analysis of the related scientific
and industrial literature. We also include examples of Al technologies in a variety of fields
and provide their readiness-vs-generality charts (see Table 1).

Methodologically, the examples analysed serve to illustrate the difficulties of estimating the
TRLs, a problem that is not specific to Al. The use of levels on the x-axis, however, has helped
us be more precise with the TRLs than would be otherwise the case. It should be noted that
our initial assessment has undergone a thorough evaluation by an independent panel of
specialists, recognised in at least one of the technologies (or areas) addressed.

In the charts we see that higher TRLs are achievable for low-generality technologies focusing
on narrow or specific abilities, while high TRLs are still out of reach for more general
capabilities. Furthermore, the shapes of the curves seen in the charts of the previous section
are informative about where the real challenges are for some technologies. Consequently, it
seems that those curves that are flatter look more promising than those for which there is a
steep step at some level on the x-axis. We use the dynamics of several Al technology
examples at different generality levels and moments of time to forecast some short-term



and mid-term Al trends. Finally, we illustrate that technological readiness does not mean
technological success, as well as the potential dangers of an excessive focus on TRL when
developing new Al technologies and the consequent criticisms related to the lack of generality
of current Al technologies.

Valuable contributions of this work are: (1) the definition of the maturity levels for an
illustrative set of Al technologies through the use of Technology Readiness Level (TRL)
assessment; (2) an interpretation of the nine TRLs (introduced by NASA and adapted by the
EU) in the context of Al, and then its systematic application to different categories in Al, by
choosing one or two examples in each category; (3) the development of new bidimensional
plots, known as readiness-vs-generality charts, as a trade-off between how general a
technology is versus its readiness level; (4) an analysis of numerous examples of Al
technologies in a variety of fields by means of readiness-vs-generality charts; and (5) a
discussion about the future of Al as a transformative technology and how the readiness-vs-
generality charts are useful for short-term and mid-term forecasting.

Table 1: Al categories and the sample of representative technologies evaluated for each of them.

Category Technology

Knowledge Representation & Reasoning Expert Systems

Recommender Systems
Learning Apprentices by Demonstration
Audio-Visual Content Generation

Machine Translation

Communication Speech Recognition
Natural Language Generation

Facial Recognition
Perception Text Recognition

Planning Transport & Scheduling Systems

Assisted, Automated and Autonomous Driving

) ) ] Home Cleaning Robots
Physical Interaction (Robotics) Logistic Robots

Inspection and Maintenance Robotics

Social & Collaborative Intelligence Negotiation Agents

Integrating Technology Virtual Assistants




2 Introduction

Artificial Intelligence (Al) is poised to have a transformative effect on almost every aspect of
our lives, from the perspective of individuals, groups, companies and governments. While
there are certainly many obstacles to overcome, Al has the potential to empower our daily
lives in the immediate future. A great deal of this empowerment comes through the
amplification of human abilities. Another important space Al systems are taking over comes
from the opportunities of an increasingly more digitised and “datafied”* world. Overall, Al is
playing an important role in several sectors and applications, from virtual digital assistants
in our smartphones to medical diagnosis systems. The impact on the labour market is already
highly visible, but the workplace may be totally transformed in the coming years.

However, there is already a high degree of uncertainty even when it comes to determining
whether a problem can be solved or an occupation can be replaced by Al today (Brynjolfsson
et al. 2018, Martinez-Plumed et al. 2020). The readiness of Al seems to be limited to: (1)
areas that use and produce a sufficient amount of data and have clear objectives about what
the business is trying to achieve; (2) scenarios where the suitable algorithms, approaches
and software have been developed to make it fully functional in their relevant fields; and (3)
situations whose costs of deployment are affordable (including data, expert knowledge,
human oversight, software resources, computing cycles, hardware and network facilities,
development time, etc., apart from other monetary costs) (Martinez-Plumed et al. 2018a). To
make things more complicated, Al is not one big, specific technology, but it rather consists of
several different human-like and non-human-like capabilities, which currently have different
levels of development (e.g., from research hypotheses and formulations to more deployed
commercial applications). At a high level, Al is composed of reasoning, learning, perception,
planning, communication, robotics and social intelligence. At a lower level, there are a myriad
of applications that combine these abilities with many other components, not necessarily in
Al, ranging from driverless cars to chatbots.

Many products we have today were envisaged decades ago but have only come into use very
recently. For instance, virtual digital assistants, such as Alexa, Siri and Google Home, are still
far from some of the imagined possibilities, but they are already successfully answering a
wide gamut of requests from customers, and have already become common shoulders to
lean on in daily life. Similarly, a computer that could recognise us has been in our imagination
and desiderata for decades, but it is only recently that Al-based facial recognition and
biometric systems abound in smartphones, security cameras and other surveillance
equipment for security and safety purposes. Machine learning and other Al techniques are
now ubiquitous; recommender systems are used to enhance customers’ experience in
retailing and streaming services, fault detection and diagnosis systems are used in industry
and healthcare, and planners and optimisers are used in logistics and transportation. Other
applications, however, have been announced as imminent, but their deployment in the real
world is taking longer than originally expected. For instance, self-driving cars are still taking
off very hesitantly and in very particular contexts. 2

The key question is not whether Al is envisaged or working in limited situations, but whether
an Al technology is sufficiently developed to be applicable in the real world, as a viable

1 https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-
stats-everyone-should-read/#277a44c060ba
2 https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber
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product leading to public and business value and real transformation. Only if we are able to
answer this question can we really understand the impact of Al research breakthroughs and
the time from different stages of their development to viable products. Policymakers,
researchers and consumers need a clear technical analysis of Al capacities, not only to
determine what is within-range and out-of-range of Al (Martinez-Plumed 2018b), but also
what are the current levels of maturity and readiness of newly introduced technologies.

2.1 Objectives and contributions

The aim of this paper is thus to define the maturity of an illustrative set of Al technologies
through the use of Technology Readiness Level (TRL) assessment. We first interpret the nine
TRLs (introduced by NASA and adapted by the EU) in the context of Al, and then we apply
them systematically to different categories in Al, by choosing one or two examples in each
category. In order to do this, we introduce new bidimensional plots, known as readiness-vs-
generality charts, as a trade-off between how general a technology is versus its readiness
level. We see that, in many domains, actual systems proven in operational environments are
already out there, but still show limited capabilities. For more generality in capabilities, the
TRL is still at an earlier stage. We include numerous examples of Al technologies in a variety
of fields and provide their readiness-vs-generality charts. These are used as exemplars that
function as practical guidelines for anyone interested in analysing other Al technologies using
a similar methodology. The examples selected in this paper are also sufficiently
representative for a discussion on the future of Al as a transformative technology and how
these charts can be used for short-term and mid-term forecasting. We start this open
discussion at the end of this paper.

2.2 Scope

We potentially consider all Al technologies, as defined by the areas that are usually
associated with the discipline. This is one of the main reasons why we enumerate a list of Al
categories that correspond to subfields in Al. In this regard we follow the Al Watch operational
definition (Samoili et al., 2020) which defines a concise taxonomy that characterises the core
domains of the Al research field (as well as transversal topics). This categorisation, which
proceeds from the absence of a mutually agreed definition and taxonomy of Al, is used as a
basis for the Al Watch monitoring activity and has been established by means of a flexible
scientific methodology that allows for regular revision. We do not use other characterisations
of Al as comprising systems that act rationally or act like a human, which may be more
restrictive. Regarding the ingredients that make an Al technology inherently ready, we cover
techniques and knowledge, but also “compute”, data and other dimensions of Al solutions.
However, other factors affecting the pace and adoption of a technology (e.g., the financial
costs of deploying solutions, labour market dynamics, economic benefits, regulatory delays,
social acceptance, etc.) fall outside the scope of this report.

2.3 Intended audience

This document is addressed, on the one hand, to researchers and companies writing project
proposals and trying to determine which TRLs they will be able to achieve, and on the other



hand, to policymakers and evaluators assessing how far a given proposal reaches in the TRL
scale. For target readers not familiar with TRLs, this document is self-contained and can also
serve as an introduction to TRLs and a way of analysing progress in Al in terms of TRLs. This
approach may represent a more fine-grained (in terms of Al area-specific and, more
specifically, example-specific readiness analysis) and systematic scale (in terms of data
collection, implementation and analysis) than using performance in benchmarks, bibliometric
analysis or simply popularity.

The rest of the paper is organised as follows. Section 2 reviews the notion of technology
readiness level, borrowed from NASA and adapted in the EU. Section 3 presents the key
methodology: we first provide the contours of what an Al technology is in particular, which is
determined more precisely by those that can be assigned to one (or more) of the seven Al
categories corresponding to subareas in the discipline. This section introduces the readiness-
vs-generality charts, which are key for understanding the state of different technologies, by
turning the conundrum between readiness and generality into a trade-off chart. Section 4
includes one or two examples of Al technologies for each of the seven categories, with a
short definition, historical perspective and the grades of generality that are used in the charts.
Section 5 discusses all charts together, finding different dynamics, and considers a
prototypical example of Al technology - the virtual assistant — covering several categories.
Section 6 concludes the paper with an analysis of future trends in Al according to the
evolution of TRL for different levels of generality. An appendix follows after the references,
including a rubric for the TRLs.



3 Technology Readiness Levels

Defined and used on-and-off for NASA space technology planning for many years, the
Technology Readiness Levels (TRL) constitute a systematic measurement approach that
supports consistent assessments, comparisons and delimitations about the maturity of one
or more technologies. TRL analysis was originally used for aeronautical and space projects
and later generalised to any kind of project, covering the whole span from the original idea
to commercial deployment. The key point underlying TRLs is that if we consider a specific
technology and we have information about the TRL in which it is located, we can get an idea
of how mature it is. Therefore, the primary purpose of using TRLs is to help decision-making
concerning the development and transitioning of technology. TRL assessment should be
viewed as one of several tools that are needed to manage the progress of research and
development activity within an organisation.

The European Commission (EC) slightly adapted the TRL descriptions to be used in the Horizon
2020 Work Programmes and calls for proposals.® The current TRL scale used by the EC
consists of nine levels. Each level characterises the maturity of the development of a
technology, from the mere idea (level 1) to its full deployment on the market (level 9).4

In what follows, we present these nine levels as we use them in this work (see the rubric for
further details in the Appendix, and Table 1 for a summary):

— TRL 1: Basic principles observed (Have basic principles been observed and reported?)
Lowest level of technology readiness. Research begins to be translated into applied
research and development. Examples might include paper studies of a technology's basic
properties.

— TRL 2: Technology concept formulated (Has a concept or application been
formulated?) Invention begins. Once basic principles are observed, practical applications
can be invented. Applications are speculative and there may be no proof or detailed
analysis to support the assumptions. Examples are limited to analytic studies.

— TRL 3: Experimental proof of concept (Has analytical and experimental proof-of-
concept been demonstrated?) Continued research and development efforts. This includes
analytical studies and laboratory studies to physically validate analytical predictions of
separate elements of the technology. Examples include components that are not yet
integrated or representative.

— TRL 4. Technology validated in the lab (Has a component or layout been
demonstrated in a laboratory (controlled) environment?) Basic technological components
are integrated to establish that they will work together. This is relatively “low fidelity”
compared to the eventual system. Examples include integration of “ad hoc” software or
hardware in the laboratory.

— TRL 5: Technology validated in a relevant environment® (Has a component or layout
unit been demonstrated in a relevant - typical; not necessarily stressing — environment?)

3 https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016-2017/annexes/h2020-wp1617-annex-
ga_en.pdf

4 Note that TRLs start from applied research, not covering the fundamental research that may lay the foundations of future
technologies. The latter may be considered as a “TRL 0” (fundamental research), although this zero level is not contemplated
in the original TRL scale, and we will not use it. The lowest level used in this paper will always be TRL 1.

5 When, in the descriptions, we talk about “relevant environment” we refer to an environment with conditions that are close
enough to or simulate the conditions that exist in a real environment (production).
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Reliability is significantly increased. The basic technological components are integrated
with reasonably realistic supporting elements so it can be tested in a simulated
environment. Examples include “high-fidelity” laboratory integration of components.

— TRL 6: Technology demonstrated in a relevant environment (Has a prototype been
demonstrated in a relevant environment, on the target or surrogate platform?)
Representative model or prototype system, which is well beyond that of TRL 5, is tested
in a relevant environment. This represents a major step up in a technology’s demonstrated
readiness. Examples include testing a prototype in a high-fidelity laboratory environment
or in a simulated operational environment.

— TRL 7: System prototype demonstration in operational environment (Has the
prototype unit been demonstrated in the operational environment?) Represents a major
step up from TRL 6, requiring demonstration of an actual system prototype in an
operational environment. Examples include testing the prototype in operational testing
platforms (e.g., a real-world clinical setting, a vehicle, etc.).

— TRL 8: System complete and qualified (Has a system or development unit been
qualified but tools and platforms not operationally demonstrated?) Technology proved to
work in its final form and under expected conditions. In most cases, this TRL represents
the end of true system development. Examples include developmental test and
evaluation of the system to determine if the requirements and specifications are fulfilled.
By “qualified” we also understand that the system has been certified by regulators to be
deployed in an operational environment (ready to be commercialised).

— TRL 9: Actual system proven in operational environment (Has a system or
development unit been demonstrated on an operational environment?) Actual application
of the technology in its final form and under mission conditions, such as those
encountered in operational test and evaluation. Examples include using the system under
operational conditions. This is not a necessary end point, as the technology can be
improved over the months or years, especially as more and more users can give feedback.
But it may also happen that general use unveils some flaws or safety issues, and the
system must be retired, with one or more TRLs being reconsidered for the technology.

We may group the above nine TRLs in terms of the environment in which the project is
developed. In the first four levels (TRL 1 — TRL 4) the technology validation environment is in
the laboratory, in levels TRL 5 and 6 the technology is being validated in an environment with
characteristics similar to the real environment and the last three levels (TRL 7 - TRL 9) deal
with the testing and validation of the technology in a real environment.® This can be seen
graphically in Table 2 below (column “Environment”).

Given the type of research, technological development and innovation being addressed, it
should be noted that the first four levels would address the most basic technological research
involving, mostly, laboratory results. Technological development would then be carried out
from the levels TRL 5 - TRL 6 until the first prototype or demonstrator is obtained.
Technological innovation projects would be between TRL 7 to TRL 9 since technological
innovation requires the introduction of a new product or service on the market and for this it
must have passed the tests and certifications as well as all relevant approvals. These levels

6 https://www.solarsteam.ca/TRL-file
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would involve deployment or large-scale implementation. These concepts are shown in the
column “Goal” of Table 1.

If we want to assess the life cycle of the technology to be developed in terms of outputs
produced,” TRL 1 to TRL 3 go from a first novel idea to the proof of concept. Subsequently,
the technological development would be addressed (TRL 4 - TRL 7) until its validation. Finally,
we would have its placing on the market and deployment (TRL 8 - TRL 9). This is shown in
Table 2 below, column “Product/Evaluation”.

Finally, one should also consider the results that each of the maturity levels would bring.
Table 2 below shows this in the column “Outputs”.

Last but not least, although TRLs have several advantages such as providing a unified and
common framework for the understanding of the status of a technology, as well as helping
to make decisions concerning technology funding and transition, there are some limitations.
Readiness does not necessarily fit appropriateness or feasibility: a mature technology (e.g.,
an automated or self-driving train) may possess a greater or lesser degree of readiness to
be used in a particular context (e.g., subways,? airports,® etc.), but the technology may not be
ready to be applied to other contexts (e.g., general railways). We will deal with this issue later
under the concept of generality.

Some disciplines have introduced variants or specific TRL scales, e.g., changing granularity
(Charalambous et al. 2017), while others have given extra criteria for the particular discipline
but keeping the original nine-level scale (Bucner et a. 2019). We will stick to the original scale
here, and instead of giving a prescriptive refinement of each level for Al, we will use the
standard rubrics (see appendix) complemented with an example-based approach, as we
explain in the following section.

7 https://www.cloudwatchhub.eu/exploitation/readiness-market-more-completing-software-development
8 https://press.siemens.com/global/en/pressrelease/europes-longest-driverless-subway-barcelona-goes-operation
9 http://www.mediacentre.gatwickairport.com/press-releases/2018/18_03_16_autonomous_vehicles.aspx
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Table 2: Summary of Technology Readiness Levels (TRLs) according to several characteristics.

Environment Goal ProducF / Outputs TRL Description
Evaluation
Scientific articles
published on the TRL  Basic principles
principles of the 1 observed
new technology
Publications or
references
Proof of highlighting the ~ TRL Technology
concept licati p concept
Laboratory applications o 2 formulated
Research the new
technology.
Measurement of TRL Experimental
parameters in the 3 proof of concept
laboratory
Results of tests
carried out inthe 15 Technolooy
laboratory.
Components Technology
validated in a TRL validated in
relevant 5 relevant
environment. environment
Simulation Development Results of tests
Prototype carried out on the Technology
: TRL demonstrated in
prototype in a 6 relevant
r_elevant environment
environment.
Result of the System
prototype level TRL prototype
tests carried out 7 demonstration in
in the operating operational
environment. environment
Operational  Implementation ~ Commercial  Results of system  ¢p, System complete
product/service tests in final and aualified
(certified) configuration. 8 a
] ] Actual system
Final reports in TRL proven in
Deployment working condition 9 operational

or actual mission.

environment
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4 Methodology

As the purpose of this paper is to determine a way to evaluate the TRLs of different Al
technologies, it is key to be sufficiently general so that we could potentially consider and
review any relevant and significant Al-related developments, covering both industry and
academia. In this regard, we should first define what we mean by an Al technology, and
whether this can capture new inventions and developments from all players related to
innovation and production. Note that Al is not a single technology, but a research discipline
in which different subareas have produced and will produce a number of different
technologies. Of course, we could just enumerate a list of technologies belonging or involving
Al, but it might well be imbalanced and non-representative of the full range of areas in Al.
Therefore, in order to be able to cover a good representation of Al technologies that have
spun off from academic or industrial research, we will identify subfields and recognise the
relevant technologies they comprise.

It is also very important to recognise that, apart from readiness levels, Al is a field that
develops cognitive capabilities at different generality levels (e.g., voice recognition for
different degrees of versatility and robustness can have different TRLs). Consequently, we
need to assign readiness levels according to different levels of generality: a technology that
is specialised for a very particular, controlled domain may reach a higher TRL than a
technology that has to be more general-purpose (performing in a wide range of different
scenarios and/or different tasks) or even open-ended (performing in uncontrolled scenarios).
In order to represent the twin importance of these two concepts, in the last subsection we
introduce the readiness-vs-generality charts, which will be applied over a subset of relevant
Al technologies in the following sections.

4.1 What is an Al technology?

In any engineering or technological field, a particular technology is defined as the sum of
techniques, skills, methods and processes used in the resolution of concrete problems (Crabb
1823). Therefore, technology as such constitutes an umbrella term encompassing any sort
of (scientific) knowledge that makes it possible to design and create goods or services that
facilitate adaptation to the environment, as well as the satisfaction of individual essential
needs and human aspirations. The simplest form of technology is the development and use
of basic tools, either in the form of knowledge about techniques, processes, etc., or embedded
into technological systems.

Artificial intelligence (or more precisely the technology that emerges from Al) is usually
defined as a “replacing technology”, or more generally as an “enabling technology” (Gadepally
et al,, 2019). Enabling technologies lead to important leaps in the capabilities of people or
society overall. For instance, writing or the computer are such enabling technologies, as they
replace or enhance human memory, information transmission or calculation. Definitely, Al
introduces new capabilities, which can replace or augment human capabilities. It is important
not to confuse an Al system with the product of an Al itself. For instance, if a generative
model creates a painting, a poem or the plan of a house, the product the Al technology creates
is not the painting, the poem or the plan of the house, but the generator, an Al system, which
embodies the autonomous ability. On the other hand, a tool such as a machine learning
library is not an Al product, but a tool that allows people to create Al products; in this case,
systems learning from data represent the autonomous ability.
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The technologies that emerge from Al are also catalogued as “general-purpose” (Brynjolfsson
et al,, 2017) and are defined as those that can radically change society or the economy, such
as electricity or automobiles. This definition, however, is not necessarily associated with how
many different uses a technology has,’® so we prefer the alternative term “transformative
technology”. Consequently, we see Al technologies as transformative (Gruetzemacher &
Whittlestone 2019). Clearly, a technology cannot be transformative if it does not reach critical
elements of society or become mainstream. This is not possible if the technology does not
reach TRL 9. As a result, many promising technologies in Al will only become transformative
when they reach the level TRL 9, and this is one reason why it is so important to assess how
far we are from this final level to really determine the expected impact of Al on society.

This is all very well, but we still need a definition of Al technology. Although there are many
different views on this, the overall research goal of Al is usually associated with the creation
of technology that allows computers to function in an intelligent manner. However, assessing
“intelligent behaviour” is still a matter of controversy and active research (Hernandez-Orallo,
2017). Therefore, we simply assume that an Al technology is any sort of scientific or industrial
knowledge derived from the research and development in any subareas of the field. Of course,
this depends on how well the contours of Al are delimited (Martinez-Plumed 2018b).
Therefore, in this document, when we talk about an Al technology, we may indistinctly refer
to a particular method used or introduced in an Al subdiscipline (e.g., an autoencoder), a
distinctive application area (e.g., machine translation), a specific product (e.g., an optical
character recognition system), a software tool or platform (e.g., a decision support system),
etc.

4.2 Categories of Al technologies

Al is not one big, specific technology; rather, it consists of several main areas of research and
development that have produced a variety of technologies. In other areas, the identification
of technologies is performed through different methods, depending on the goal of the
technology: craft or industrial production of goods, provision of services, organisation or
performance of tasks, etc. However, the common phases in the invention and development
of a new technology start with the identification of the practical problem to be solved. In the
case of artificial intelligence, we can assimilate this first stage of the identification of
technology with a given cognitive capability that we want to reproduce or create
mechanically. These capabilities are usually grouped into areas of Al. Therefore, before
starting to analyse the maturity levels of these different Al technologies, we will introduce
those main fields of research in Al and what sort of relevant technologies they comprise. This
categorisation is inspired by the operational definition of Al adopted in the context of Al
Watch (Samoili et al., 2020), which proposes a concise taxonomy that characterises the core
domains of Al research, as well as some transversal areas. In our case we focus on a list of
seven categories, leaving out those more philosophical or ethical research areas related to
Al. The categories selected are defined as follows:

— Knowledge representation and reasoning: This subarea of Al focuses on designing
computer representations (e.g., data structures, semantic models, heuristics, etc.) with the
fundamental objective to represent knowledge that facilitates inference (formal

10 Actually, whether an Al technology is general-purpose or not will be considered by the term “generality” below. Some Al
technologies are actually very specific.
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reasoning) to solve complex problems. Knowledge representation is being used, for
instance, to embed the expertise and knowledge from humans in combination with a
corpus of information in order to automate decision processes. Some specific examples
are IBM’s Watson Health (Ahmed et al., 2017), DXplain (Hoffer et al., 2005) and CaDet
(Fuchs et al., 1999).

Learning: A fundamental concept of Al research since its inception is the study of
computer algorithms that improve automatically through experience (Langley, 1996).
While the term “learning” refers to more abstract, and generally complex, concepts in
humans (such as episodic learning), today we tend to associate learning by computers
with the prominent area of machine learning, in a more statistical or numeric fashion,
such as implemented in neural networks or probabilistic methods (techniques that are
now used in many of the other subdisciplines below). Machine learning involves a myriad
of approaches, tools, techniques and algorithms used to process, analyse and learn from
data in order to create predictive models, identify descriptive patterns and ultimately
extract insights (Flach, 2012; Alpaydin, 2020). These general algorithms can be adapted
to specific problem domains, such as recommender systems (in retail or entertainment
platforms), understanding human behaviour (e.g., predicting churn) or classification of
images or documents (e.g., filtering spam).

Communication: Natural Language Processing (NLP) is the Al subfield concerned with
the research of efficient mechanisms for communication between humans and machines
through natural language (Clark et al., 2013; Goldberg, 2017). It is mainly focused on
reading comprehension and understanding of human language in oral conversations and
written text. There is considerable commercial interest in the field: some applications of
NLP include information retrieval, speech recognition, machine translation, question
answering and language generation. Today, NLP, for instance, can be used in advertising
and market intelligence to monitor social media, analyse customer reviews or process
market-related news in real time to look for changes in consumers’ sentiments toward
products and manufacturers.

Perception: Machine perception is the capability of a computer system to interpret data
from sensors to relate to and perceive the world around them. Sensors can be similar to
the way humans perceive the world, leading to video, audio, touch, smell, movement,
temperature or other kinds of data humans can perceive, but machine perception can
also include many other kinds of sophisticated sensors, from radars to chemical
spectrograms, to massively distributed simple sensors coming from the Internet of Things
(IoT). Computer vision (Szeliski, 2010) has received most attention in the past decades
and deals with computers gaining understanding from digital images or, more recently,
videos. Many applications are already in use today such as facial identification and
recognition, scene reconstruction, event detection or video tracking. Computer audition
(Gold et al,, 2011) deals with the understanding of audio in terms of representation,
transduction, grouping, use of musical knowledge and general sound semantics for the
purpose of performing intelligent operations on audio and music signals by the computer.
Applications include music genre recognition, music transcription, sound event detection,
auditory scene analysis, music description and generation, emotion in audio, etc. Speech
processing is covered by both perception and communication, as it requires NLP. Finally,
tactile perception, dexterity, artificial olfaction, and other more physical perception
problems are usually integrated into robotics (see below), but are also needed in a wide
range of haptic devices and many other applications.
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— Planning and search: This Al subject, which is related to decision theory (Steele et. al.,
2016), is concerned with the realisation of strategies or action sequences aiming at
producing plans or optimising solutions for the execution by intelligent agents,
autonomous robots, unmanned vehicles, control systems, etc. Note that a planning
problem can be reduced to a search problem (Russell & Norvig, 2002). However, the
actions to be planned or the solutions to be optimised are usually more complex than the
outputs obtained in classification or regression problems, due to the multidimensional
and structured space of solutions (e.g, a Markov Decision Process). In terms of
applications, although planning has had real-world impact in applications from logistics
(Kautz et al., 2000), to chemical synthesis (Segler et al., 2018), or health (Spyropoulos,
2000), planning algorithms have achieved remarkable popularity recently in games such
as checkers, chess, Go and poker (Silver et al., 2016, 2017; Brown et al.,, 2019), usually in
combination with reinforcement learning.

— Physical interaction (robotics): This area deals with the development of autonomous
mechanical devices that can perform tasks and interact with the physical world, possibly
helping and assisting humans. Although robotics as such is an interdisciplinary branch of
engineering and science (including remote-controlled robots with no autonomy or
cognitive behaviour), Al typically focuses on robots (Murphy 2019) with a set of particular
operations and capabilities: (1) autonomous locomotion and navigation, indoor or outdoor;
(2) interaction, working effectively in homes or industrial environments, perceiving
humans, planning their motion, communicating and being instructed to perform their
physical procedures; and (3) control and autonomy, including the ability for a robot to
take care of itself, exteroception, physical task performance, safety, etc. As examples of
well-known applications of robots with Al we find driverless cars, robotic pets or robotic
vacuum cleaners.

— Social abilities (collective intelligence): The broad category covering social abilities
and collective intelligence has to do with Multi-Agent Systems (MAS), Agent-Based
Modelling (ABM), Swarm Intelligence, as well as other related topics such as Game Theory
(in auctions, networks, economics, fairness equilibria, etc.)., where collective behaviours
emerge from the interaction, cooperation and coordination of decentralised self-
organised agents (Shoham et al, 2008). In general terms, here we include those
technologies that solve problems by distributing them to autonomous “agents” that
interact with each other and reach conclusions or a (semi-)equilibrium through interaction
and communication. This area overlaps with learning, reasoning and planning. For
instance, recommender engines are well-known applications where group intelligence
emerges from collaboration (Chowdhury et al., 2010).

The above categorisation is sufficiently comprehensive of the areas of Al (and the capabilities
that are being developed in the subject) to provide a balanced first-level hierarchy to which
we can assign specific technologies. Of course, there will be some technologies that may
belong to two or more categories (we will include an example in the discussion), but we do
not expect to have technologies that cannot be assigned to any category. Finally, note that
Al technologies may be also categorised in the form of applications or programmes
developed to perform specific tasks (weak Al). Actually, Al has been used to develop and
advance numerous fields and industries and, therefore, we can find a wide range of examples
of Al applications in areas such as healthcare (e.g., medical diagnosis), marketing (e.g., online
assistants), automotive and transportation (e.g., self-parking and cruise controls), finance
(e.g., electronic trading platforms), media (e.g., deep fakes), military (e.g., unmanned combat
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aerial vehicles), education (e.g., digital assistants/tutors), and more. These are all high-profile
examples which, beneath the surface, are using different precise Al techniques (belonging to
the above list of seven categories) to successfully perform their tasks. In this sense, whatever
the categorisation we use for Al technologies, any subsequent TRL analyses would draw
similar conclusions as we are following an example-based approach for TRL evaluation
choosing one or two examples in each of the considered categories.

4.3 TRL assessment in Al: readiness-vs-generality charts

In order to assess the readiness levels of Al technologies, we also face an important dilemma
between the readiness level and the ability to act and successfully perform in real-world,
open-ended (uncontrolled) scenarios. If we describe a generic technology (e.g., a robotic
cleaner), we will have a very different assessment of readiness depending on whether the
specification of the Al system requires more or less capabilities.*! For instance, if the robotic
cleaner is expected to clean objects by removing them and placing them back, and also to
cover vertical and horizontal surfaces when people and pets are around, then the readiness
level is expected to be lower than a vacuum cleaner roaming around on the floor, with a
particularly engineered design that avoids some of the problems of a more open-ended
situation. Of course, one can specify all these technologies separately, and identify different
clusters of functionalities, as we see below in Figure 1 (left). These technologies are mostly
independent and can reach different TRLs (shown in different darkness levels). Progress
would be analysed by observing for how many of them the TRLs increase. However, the
overlaps are not systematic, and high TRLs could be obtained by covering the whole space
with very specific solutions.

All tasks, situations All tasks, situations
and conditions and conditions Layer3

Niche 3

Niche 2 Layer1

Nicho 1

Figure 1. Left: we can consider different instances of the technology covering different niches, each
of them solving a set of tasks, situations and conditions that are not hierarchically related to each
other. Each cluster of functionality achieves a different TRL (shown with different darkness levels)
that is mostly independent of the other niches. Right: we choose a decomposition of the space such
that each instance of the technology that we analyse is a superset of the previous instances. We call
these instances “levels of generality”, as they are broader than the previous ones, containing them.

11  Note that we should not confuse “capability” (or functionality) with “sophistication” (or complexity): using a more
sophisticated system does not guarantee further capabilities.
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A different way of organising this space is a hierarchical generality model of technology, as
illustrated in Figure 1 (right). In many areas, as we will see in the following sections, there is
some meaningful way (many times more than one) to arrange the space of tasks, situations
and conditions in a hierarchical order. If we are able to select one hierarchy that is a total
order (i.e., each pair of instances are comparable), then any instance is a subset of a more
general instance and, thus, we will be able to talk about different levels of generality of the
same technology. This ensures that no smaller task or situation is left out. Also, the idea of
levels is a good representation of the fact that, very often, progress is cumulative.

Note that the higher the generality is, the lower the expected readiness level becomes and
vice versa. This will help to understand the common situation where a technology is stuck at
TRL 7, but reducing the scope of the technology, i.e., less general, or focusing on a specific
functionality can lead to a product with TRL 9. Robotic vacuum cleaners are a good example
of this. By limiting the scope of the technology, whether it be the task (only floor vacuuming)
or the range (simple trajectories), the system is more specialised (or narrow), with the
successful outcome that these devices are found in many homes today (TRL 9).

Another advantage of the hierarchical generality model of technology is that the total order
allows the levels to be considered as an ordinal magnitude that can be represented in a
Cartesian space along with another ordinal magnitude, the TRL. Thus, we can use two-
dimensional plotsl2 (readiness-vs-generality charts) with the degree of generality
anticipated on the x-axis and the readiness level (the TRLs) on the y-axis. Figure 2 illustrates
this idea with an example.

Layer of capability 1 Layer of capability 2 Layer of capabllity 3 Layer of capability N

Figure 2. Readiness-vs-generality chart showing the different levels of capabilities (more specific to
more general) on the x-axis and TRLs on the y-axis. Typically, the points will form a “curve” with a
descending curve. Progress towards truly transformative Al will be achieved by moving this curve to
the top right.

As we move right on this plot, we have a system or application (i.e., an Al technology) that is
more generally applicable. As we go up the plot, product readiness increases, in term of being

12 Both magnitudes (generality and TRL) are ordinal rather than quantitative, so technically a grid would be a more accurate
representation than a Cartesian plot. Also, we connect the points with segments, but this does not mean that the
intermediate points in these segments are really meaningful.
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used in the real world. Such a plot can be applied to any technology (e.g., a pencil is both
general and ready, as a writing device), but determining the balance between generality and
readiness is key in artificial intelligence, since many technologies sacrifice generality for
performance in a particular niche of application to reach some narrow readiness. Only
reaching the top right corner will generate truly transformative technology.*® For instance, a
robotic vacuum cleaner moving around our floors has reached TRL 9 but has not transformed
society. A fully-fledged robotic cleaner would do so, affecting millions of jobs and the way
homes are organised for cleaning, recycling and even decoration.

The shape of these charts may reveal some important information. A steep decreasing curve
that reaches high TRL levels for only low capabilities may show that important fundamental
research is required to create - probably new — Al technologies that reach higher levels of
generality. A flat curve that reaches only medium TRL for a wide array of capabilities may
mean that reaching a commercial product or general use may depend on issues related to
safety, usability or societal expectations about the technology, and not so much about
rethinking the foundations of the technology. Nevertheless, a case-by-case analysis may lead
to different interpretations. The next section presents the respective readiness-vs-generality
chart for an illustrative set of Al technologies.

Before presenting the case-by-case analysis, we need to fix some criteria to determine the
x-axis and the precise location of each point on the chart. Unfortunately, there is no standard
scale for levels of generality that could be used for all technologies. For each technology,
levels of generality are established by looking at the historical evolution of the technology,
which means that some levels (e.g., word recognition for reduced vocabularies) did not gain
traction, while others (e.g., speech recognition for reduced vocabularies) can be identified as
an early milestone in this technology. In all technologies, we can identify different dimensions
that can help us define the levels. For instance, two dimensions are commonly involved in
the definition of the levels of generality: how many situations the technology can cover
(environments, kinds of problems), which can be associated with task generality, and the
diversity of conditions for these situations (e.g., quality of the information, noise, etc.), which
can be associated with robustness. The first dimension (i.e., situation covered) can unfold into
two or more parameters (e.g., for speech recognition: size of vocabulary and number of
languages). In our hierarchical generality model of technology, we merge all of them into one
single ordinal level. There are of course cases where more challenging versions of the
technology cannot easily be reduced to such a unidimensional scale, but we can still try to
find a scale of levels that extend from lower to higher generality. In a few cases, we will
simply reuse some pre-established standard levels (usually defined at a development level
rather than at a capability level) that have been used in the past for that particular
technology, or even used as standards, as happens with machine translation (see the four
basic types of translation (Hutchins et al. 1992)) and self-driving cars (see the US National
Highway Traffic Safety Administration (NHTSA) definition of six levels of car autonomy™).

Once the space is defined by the generality levels and the nine readiness levels, we locate
the points in the following way. First, we follow the rubric in the appendix. Second, for each
level, we identify the highest TRL according to the best player (research team or company)
as per 2020. The reasoning behind this choice - e.g., instead of choosing an average - is due
to the fact that Al technologies are digital, which means that they are quickly imitated by

13 Here we refer to the concept of Radically Transformative AI (RTAI) from (Gruetzemacher et al., 2019) which is referred to
as “Al capabilities or products which lead to societal change comparable to that precipitated by the agricultural or industrial
revolutions”. We may find examples of RTAI in the literature such as high-level machine intelligence (Grace et al., 2018),
comprehensive Al services (Drexler, 2019) or a broadly capable system (Gruetzemacher, 2019).
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other players. Indeed, the possible slowing factors such as patents are usually compensated
by open publication platforms such as arXiv** and open software platforms such as github, *°
not to mention the common mobility of key people in Al between academia, industry and
especially key tech giants, bringing the technology with them and spreading it to other
players.

Finally, even using this generality-vs-readiness space and the rubric in the appendix, there
will be cases where we struggle to assess the TRL precisely. This can be caused by partial
information about the technology, a definition of the TRLs that is not crisp enough, or the
literature-based definitions for the levels of generality. It may also be the result of the
authors of this report not being experts in each and every subarea in Al (although some
detachment may also be positive). In other cases, this is caused because our assessments
have been overseen by several experts (see the list in the acknowledgements at the beginning
of the document) and occasionally there were some minor discrepancies. For all these cases
we will use vertical error bars. We hope that some of our assessments could be replicated by
other groups of experts and build these bars as proper confidence bands from the variance
of results from a wider population of experts.

4.4 Methodology summary

The methodology developed in this report to define the maturity of Al technologies through
the use of Technology Readiness Level (TRL) assessment covers the identification of Al
technologies through to the assessment of their maturity levels:

1. ldentification of relevant Al technologies. Based on the categorisation of Al
technologies in section 3.2, we have assigned specific (illustrative) technologies to
each Al area. The selection of technologies is based on our own experience and
knowledge about their relevance and “general use”. Furthermore, for some specific
cases, we have also considered the associated levels of research activity (e.g., number
of related papers, results, benchmarks, challenges, tasks, etc.) behind a particular
technology. For the latter we have used the information provided in the
Alcollaboratory (Martinez-Plumed et al. 2020a, 2020b, 2020c).

2. Analysis of the TRLs for Al technologies. We introduce and use two-dimensional
plots called readiness-vs-generality charts in which we define the degree of generality
of specific Al technologies on the x-axis vs the readiness level (the TRLs) on the y-
axis. For each technology we define the different levels of capabilities based on a
comprehensive analysis of the related scientific and industrial literature.

3. Expert panel evaluation. Our initial assessment undergoes a thorough assessment
by an independent panel of specialists, recognised in at least one of the technologies
(or areas) addressed. The experts are asked to follow the rubric in Appendix A to
estimate the particular level in the scale for specific technologies. Furthermore,
experts provide further information on the technology in question, such as signposting
the most relevant research documents and publications which may help focus the
analysis onto the most appropriate works, highlighting also any pertinent issues
relating to the different technologies.

14  https://arxiv.org/
15 https://github.com/
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Integration and evaluation. Both our evaluations and the (qualitative) feedback
and discrepancies provided by the panel of experts are then used to derive error bars
in the readiness-vs-generality charts for each technology. The results are then
summarised, and a briefing is produced which is subjected to a further series of
reviews and revisions. Note that a wider group of experts, using more extensive
training on the TRLs and usual methods for aggregation or consensus of opinions
(such as the Delphi method (Bernice 1968)) would bring more robustness to the TRL
estimates, including a systematic way of deriving the error bars.
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5 TRL Assessment for representative Al technologies

In this section, we select some illustrative Al technologies to explore how easy and insightful
it is to determine the TRL for each of them. We will examine the technologies under the
categories presented in section 3.2, and will use readiness-vs-generality charts for each of
these technologies.

5.1 Knowledge representation and reasoning

Reasoning has always been associated with intelligence, especially when referring to humans.
It is no wonder that the first efforts in Al were focused on building systems that were able
to reason autonomously, going from some premises to conclusions, as in logic. We select one
Al technology in this category, expert systems, because of its historical relevance and
representativeness of reasoning systems.

5.1.1 Technology: Expert Systems

Expert systems, which were introduced in the 1980s, are a traditional Al technology that
humans can use to extend or complement their expertise. Expert systems are usually good
at logical reasoning and receive inputs as facts that trigger a series of chain rules to reach
some conclusions (typically as facts or statements). Expert systems are still fuelling many Al
systems today, sometimes under the name “knowledge-based systems”, and can be found
in some digital assistants or chatbots. In the early days of expert systems, the rules, i.e., the
expertise encoded by the expert system, were usually created by experts manually, but
nowadays knowledge can be extracted from document repositories or other sources such as
the web or Wikipedia (Mitchell et al., 2018; Gongalves et al., 2019). Modern expert systems
can also revise their knowledge more easily than was possible in the past. Such systems can
deal with vast amounts of complex data in many application domains (Wagner, 2017).

Expert Systems

9

TRL

Narrow static and Narrow dynamic and Broad knowtedge
certified knowledge uncertain knowledge common sense and
meta-cognition

Figure 3. Readiness-vs-generality chart for expert system technology. While TRL 9 has clearly been
reached for narrow systems with static and certified knowledge (early commercial systems and many
expert systems still in place today), a very low TRL is estimated for expert systems dealing with
general, broad knowledge and common sense. Current development is taking place at an intermediate
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level of expert systems, where knowledge is still narrow, but is changing, uncertain and updatable.
Error bars are shown at this level because of doubts in the autonomy of some of these systems (e.g.,
IBM’'s Watson).

Because of the evolution of expectations and capabilities of expert system technology, the
x-axis of Figure 3 uses three different generality levels of expert systems:

— Level 1 - Narrow static and certified knowledge: Manually codifying narrow
expertise knowledge, reason through bodies of specific knowledge, explain the reasoning,
draw complex conclusions, etc.

— Level 2 - Narrow dynamic and uncertain knowledge: Automated knowledge
refinement (belief revision, reason maintenance (Reinfrank 1988), etc.), reason under
uncertainty, actionable insights, etc.

— Level 3 — Broad knowledge, common sense and meta-cognition: Introspective and
broad knowledge, common sense, creative responses.

For the first level, early academic systems such as MYCIN (Shortliffe, 2012) or CADUCEUS
(Banks, 1986) progressed from research papers to prototypes in relevant environments (TRL
7) in the 1970s and 1980s. Because of the excitement and expectations of expert systems
in the 1980s, some commercial systems were used in business-world applications, reaching
TRL 9. For instance, SID (Synthesis of Integral Design) was used for CPU design (Gibson et al,
1990). The success of former expert systems in TRL 9 also unveiled some limitations (e.g.,
narrow domains, manual knowledge acquisition, lack of common-sense knowledge, no
revision, etc.). Today, many knowledge-based systems, usually coding business rules in
database management systems as procedures or triggers, actually work as expert systems
at this first level. Consequently, even if the term “expert system” is in disuse today, systems
with these capabilities are still operating at TRL 9, as shown in Figure 3.

The second level represents a new level of expectations raised after the limitations of the
1980s. A new generation of expert systems was sought to overcome the knowledge
acquisition bottleneck and be robust to change and uncertainty. They have been integrating
automated rather than manual knowledge acquisition, and are deployed in a variety of
industrial  applications, such as health/diagnosis (Hoffer et al, 2005),
control/management/monitoring (Jayaraman et al, 1996), stock markets (Dymova et al,,
2012), space (Rasmussen, 1990), etc. However, many of these systems do not meet the
expectations of robustness and self-maintenance completely, and some of the features of
level 2 are not fully autonomous (requiring important human maintenance). Because of this,
we consider them more like market-ready research being tested and demonstrated in
relevant environments, and thus covering different TRLs (from TRL 5 to TRL 9, ranging from
prototypes to commercial products). This is reflected by the error bars in the figure. This can
also be applied to a new generation of systems such as IBM’s Watson (Ahmed et al., 2017),
which has already been validated and demonstrated in specific operational environments
(e.g., healthcare). Watson, in a limited sense, could be understood to be a powerful expert
system, also combining a number of different techniques for natural language processing,
information retrieval, hypothesis generation, etc.
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At the third level of generality, we are referring to systems incorporating broad knowledge
and common-sense reasoning over that knowledge, including reasoning about what the
system does not know (beyond assigning probabilities to their conclusions, as Watson does).
While capturing and revising knowledge automatically for a wide range of domains has been
illustrated in research papers and lab prototypes (Mitchell et al., 2018), nothing resembling
true common-sense reasoning has been shown even at a research level,'® and that is why
we assign TRL 1 to this level (although it is more likely a fundamental research stage even
before this level).

The schism between levels 2 and 3 (and the lack of progress on this schism in the past years)
suggests that fundamental research still needs to be done until Al systems exhibit more
human-like common-sense reasoning, being capable of predicting results and drawing
conclusions that are similar to expert humans.

Of course, expert systems are not the only technology in the knowledge representation and
reasoning category. Automated theorem provers, Boolean satisfiability problem (SAT) solvers,
belief revision engines, truth maintenance systems, etc., as well as other different types of
deductive and inference engines, are successful technologies that could also be analysed to
determine their TRLs at different generality levels.

5.2 Learning

Learning is probably the most distinctive capability of systems that adapt to their
environment. Systems that do not learn are fragile and cannot cope with any situation that
was not accounted for beforehand. In the case of Al technologies, we want to consider
systems that are not the result of the capability (e.g., a static classifier built with a machine
learning technique that is no longer learning), but systems that continually improve with
experience. We choose two technologies in this category: recommender systems that are
constantly updating their recommendations as new data comes in, including new items, and
more sophisticated apprentices by demonstration, which learn by observing how a (human)
expert performs a task. Both are good examples of Al technologies that represent learning
systems.

5.2.1 Technology: Recommender Systems

A recommender system (Ricci et al., 2011) is a type of information filtering system that aims
to provide a way to quickly show users or cosumers different types of topics or information
items (e.g., movies, music, books, news, images, web pages, etc.) that they are looking for, as
well as to discover new ones that may be of their interest. A recommendation service should
help cope with the flood of information by recommending a subset of objects to the user by
predicting the “rating” or “weight” that the user would give to them. Recommender systems
are based on the idea of similarities between items (i.e., an item is recommended based on
interest of a similar item) or users (i.e, an item is recommended based on what a similar
customer has consumed), or a combination between them both.

16 Despite the recent success of NLP systems in Winograd Schema Challenge (context-based pronoun disambiguation problems)
(Levesque et al, 2012), an alternative of the Turing Test (Turing, 1950), several criticisms question whether improved
performance on these benchmarks represents genuine progress towards common-sense-enabled systems (see, e.g.,
Trichelair et al., 2019).
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Recommender Systems

Direct Indirect Context-aware Recommendation
feedback-based feedback-based highly personalised content generation
recommendations recommendations recommendation

Figure 4: Readiness-vs-generality chart for recommender engines technology. TRL 9 is reached for
those very well-known recommender systems based on user feedback and used in a variety of areas
such as playlist generators for video and music services or product recommenders. Current
developments going beyond explicit feedback and using non-explicit latent attributes have already
demonstrated their value in operational environments. Lower TRLs (TRL 2 to TRL 6) are estimated for
more complete and flexible recommender systems being able to perform deeper personalisation
using various dimensions of data. Finally, recommendation content generation would be a future
direction in the field, with still little or no research nowadays.

Because of the evolution of expectations and capabilities of recommender systems
technology, the x-axis of Figure 4 uses four different generality levels described in the
following:

— Level 1 - Direct feedback-based recommendations; Personalised recommendation
based on explicit rankings/feedback (click, buy, read, listen, watch ...) over users/items and
contexts.

— Level 2 - Indirect feedback-based recommendations: Recommendations beyond
explicit feedback with latent attributes representing categories that are not obvious from
the data.

— Level 3 - Context-aware highly personalised recommendation: User-based and
context-aware personalised optimisation/recommendation balancing competing factors
such as diversity, context, evidence, freshness and novelty, and using direct/indirect
feedback, adding value-aware recommendations, etc.

— Level 4 — Content generation recommendation: Recommendations of what new
items/content should be created to fill missing needs and add value.

For the first level of generality, we find those recommender systems able to find explicit
similarity in users and items (making use of either or both collaborative filtering and content-
based filtering (Ricci et al., 2011)) based on explicit feedback. Here we find a number of
commercial systems that are or have been used in business-world applications, reaching TRL
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9. For instance, we find Pandora’s Music Genome Project (Howe 2009) or Stitch Fix’s fashion
box'” as examples of content-based recommender systems. Also, the engines used in
Amazon, Netflix (Gomez-Uribe, 2015), YouTube (Davidson, 2010), Spotify*8 or Linkedin (Wu
et al,, 2014) were (at the beginning of their development) examples of collaborative filtering-
based approaches.’® Finally, there are also popular recommender systems for specific topics
like restaurants and online dating, as well as for exploring research articles and experts (Chen
et al, 2011), collaborators (Chen et al., 2015) and financial services (Felfernig et al., 2017).

For the second level, more effective methods are currently being developed to look at
similarity beyond explicit feedback as well as latent attributes (e.g., by using matrix
factorisation (Koren et al., 2009) or deep learning embeddings (Zhang et al., 2019)) revealing
relationships that have not yet been realised. Research behind these more advanced and
flexible approaches has increased exponentially in recent years® with notable examples such
as those from Zillow,# Netflix?2 and Airbnb (Grbovic, 2018) already demonstrating success in
operational and real-world environments (TRL 9).

Although successful, recommender systems still need to account for and balance multiple
(competing) factors such as diversity, context, popularity/interest, evidence, freshness and
novelty (Amatriain et al,, 2016), for instance, to make sure the recommendations are not
biased against certain kinds of users and thus going beyond being simple proxies of accurate
rating predictors. Furthermore, multi-dimensional rating would also be a step beyond (Shalom
et al, 2016) for recommender systems being able to optimise and personalise the whole
user experience (e.g., using a product, website, platform, etc.) via deep personalisation and
using various dimensions of data. In this regard, recommendations and optimisations should
be based on the understanding of a user’'s browsing or attention behaviour. All this would
correspond with the third level of generality in Figure 4, being still a matter of research and
prototyping (TRL 2 to TRL 6) with some approaches and examples found in the literature (see
e.g., Leonhardt et al. 2018, Ahmed et al. 2012, Kang et al. 2019).

Regarding the fourth level of generality, we are including further innovations for
recommendation systems such as recommending new items/products/services/contents that
do not exist and should be created to fill missing needs aiming at increasing, for instance,
the value of the company or platform. Generating the content of a recommendation is still a
research matter, including proof-of-concepts validated in lab (TRL 2 to TRL 4) with some
ideas already published such as automatic food menu generation (Bianchini et al., 2017),
music generation (Johansen, 2018), simple fashion design® (Kang et al., 2017; Kumar and
Gupta, 2019) or even artificially generated comments (Lin et al., 2019).

As a final note, and in terms of current advances, some authors (Ekstrand et al., 2011,
Konstan et al, 2013; Beel et al., 2016) have found that current research in recommender
systems is stagnated because it is not providing meaningful contributions either in terms of
more advanced capabilities, or regarding practical applications. The main reasons for the
small impact of the research in this area are mainly the difficulties in reproducing
recommender systems’ research results, the lack of consistent and standard evaluations, the

17 https://algorithms-tour.stitchfix.com/

18 https://towardsdatascience.com/how-spotify-recommends-your-new-favorite-artist-8c1850512af0

19 Note that, currently, some of these companies use more advanced neural-based approaches (see, e.g., Covington et al,
2016).

20 E.g., The leading international conference on recommendation systems (RecSys) started to organise regular workshops on
deep learning in 2016.

21  https://www.zillow.com/tech/embedding-similar-home-recommendation/

22 https://help.netflix.com/en/node/100639

23 https://towardsdatascience.com/the-future-of-visual-recommender-systems-four-practical-state-of-the-art-techniques-
bae9f3e4c27f
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inexistence of comprehensive experiments, and the necessity of establishing best-practice
guidelines for recommender-systems research. Hence, practitioners and operators of
recommender systems may find little guidance in the current research when looking for which
recommendation approaches to use to address their specific tasks and problems.

5.2.2 Technology: Apprentice by Demonstration

Recommender systems are complex systems involving different types of information.
However, in some way, they do not differ much from a classification problem powered by
statistical correlations and patterns. In the case of humans, learning is usually associated
with more complex phenomena, such as episodic learning, the creation of abstract concepts
and the internalisation of new procedures. Many of these areas are still at a preliminary stage
in Al (as they have always been!), but some others are beginning to show more progress in
recent years. Learning by demonstration (Schaal, 1997) is one of these types of learning that
is more complex than a classical supervised or unsupervised machine learning problem, or
even a generative model. Learning by demonstration, and the related learning by imitation
(Miller et al.,, 1941), is the way in which culture is transmitted in primates, including humans.
It is also very relevant in the workplace, as many tasks are just taught by an expert illustrating
a procedure to an apprentice, sometimes with little verbalised instruction involved. More
recently, with the popularity of short videos demonstrating simple tasks such as fixing a
bicycle brake to cooking a fried egg, learning by demonstration is becoming the preferred
way of instruction for many people. Consequently, progress in this area could have a
significant impact on society.

Learning by demonstration is more technically defined in Al as learning a procedure or a task
from traces, videos or examples of an operator (usually a human) performing the task. We
limit our study here to tasks where the actions are discrete and relatively simple in order to
avoid overlapping with the robotics category. For instance, a videogame with a finite number
of “action keys” is an example of this technology, or a spreadsheet automation that learns a
simple programme snippet to perform an operation. A full operator in a factory is ruled out
here because of all the propriosensory complexity being involved. Consequently, we are
referring to a technology that is usually known more specifically as programming by
demonstration (Cypher 1993) or programming by example (Lieberman, 2001). However,
more recently, the combination of deep learning with reinforcement learning has developed
new techniques, such as deep reinforcement learning, that are able to learn from the
interaction with the environment. Soon, some of these techniques evolved to take advantage
of traces (Sutton et al.,, 1998), or recorded interactions performed by a human or an artificial
expert (Silver et al., 2016; Mnih et al., 2016, Harb et al., 2017).
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Figure 5: Readiness-vs-generality chart for learning by demonstration. We see that level 1 reaches
TRL 9, especially because of the possibilities of deep reinforcement learning using human traces.
Level 2 also reaches TRL 9 in some domains, such as spreadsheet automation (although not in others,
but we represent the maximum here, as we do in all other charts). Finally, level 3 requires learning
systems that can process background knowledge in any domain, which is still at a very preliminary
stage (TRL 2) with the principles and their envisaged applications.

The x-axis of Figure 5 uses three different generality levels, defined as follows:

— Level 1: Many examples, no background knowledge or common-sense needed
for a particular domain: In this “simple” case, a system can learn from a particular
configuration of perceptions and actions (e.g., video games) and learn from thousands of
traces of humans (or other systems) succeeding or failing at the task. Note that this is
supposed to be more efficient than learning without traces, or necessary in some
environments for which we lack a simulator, and a database of recorded cases is required
(e.g., protocols, treatments, etc.).

— Level 2: Very few examples, background knowledge needed, working for a
particular domain: When few examples are available, learning needs to rely on
background knowledge. Here, we assume that only one domain (i.e., particular scenario
or task) can be handled, by embedding sufficient background knowledge into the system
or in the domain-specific language used for the representation of the policies and
procedures.

— Level 3: Very few examples, background knowledge needed, working for any
domain: In this case we want the system to handle virtually any domain. In order to reach
this generality, we need the flexibility of changing the background knowledge from one
domain to another, or a system that has wide knowledge about different areas, so that
it can understand traces, videos, demos, etc., for different domains. For instance, the
system should be able to automate a task, e.g., in a sales office or in a newspaper editorial
office.
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Given these levels, we can now assign the TRLs. For level 1 we can use as evidence the
progress of deep reinforcement learning from traces. For instance, AlphaGo (Silver et al.,
2016) was able to learn how to play Go but used some hints from human traces. Similarly,
many deep reinforcement learning algorithms use traces (Mnih et al., 2016; Harb et al.,, 2017).
Because new variants of these algorithms are open source and already implemented,?* with
more modest resources than in the original paper, this puts us in TRL 9, at least for the case
of video games. If we want to create an agent that can learn to play different Arcade games
from observation, this can be done, and no background knowledge about the games is
needed.

In level 2, the challenge comes from the limited number of examples. Humans usually need
just one representative example to get the idea of a new task. This is possible because they
have contextual information and background knowledge about the elements and basic
actions that appear in the demonstrated task. This domain knowledge can be hardcoded into
the system, either as rules or in the language itself used to express the learned procedures.
We also assign a TRL 9 because of some successful systems in the domain of spreadsheet
automation. In particular, Flash Fill (Gulwani et al., 2012) is based on a particular domain
specific language that enables Microsoft Excel users to illustrate a simple formula with very
few examples. The same idea has been brought to other domains, although each system
requires a particular DSL for each domain (Polozov et al., 2015).

Finally, for level 3, we would like the same system to be able to learn tasks in different
domains. This would mean that this apprentice could be applied for traces or videos in any
domain and could replicate the task reliably. This level is still in its inception, even if there
has been research for decades (Muggleton, 1992; Olsson, 1995; Ferri et al., 2001; Gulwani
et al,, 2015). While some systems have been applied to toy problems, we do not find evidence
beyond having the technology concept formulated, and this is why we assign TRL 2.

Clearly, progress in this final level would have a major impact in many daily tasks that are
repetitive and would not need programming or writing scripts or code snippets by hand. Such
a system would have a transformative effect on the labour market and the work of
programmers, among other professions. Because the challenge may depend on symbolic
representations (for knowledge representation) and it has been explored for decades, we do
not expect a breakthrough to high TRL 9 in the near-term future.

5.2.3 Technology: Audio-visual content generation

Audio-visual content generation technology is a very recent Al technology (from mid-2010)
which comprises those techniques and algorithms able to create completely new content
from “nothing”. These technologies may generate, for instance, photographs that look
authentic to human observers. For example, a synthetic photograph of a cat that manages
to fool the discriminator (one of the functional parts of these algorithm) is likely to lead a
random person to accept it as a real photograph. In this context, there are two key
technologies: generative adversarial networks or GANs (Bengio, 2014), and variational
autoencoders also known as VAE (Welling, 2014).

The former, the GANSs, are based on the confrontation of two competing neural networks in
a continuous zero-sum game. That is, the loss or gain of one of these networks is

24 See, e.g., https://github.com/openai/baselines

29


https://github.com/openai/baselines

compensated by the loss or gain of the other. In this way, one of the networks, the generative
one, produces realistic samples of what is intended to be created, such as texts, images,
sounds, etc. The goal of the second neural network (the discriminator) is to discriminate
between real images and false images and, thus, it helps the generator to deliver results that
are more accurate and so similar to a real image that they cannot be differentiated. The
generator’'s goal is to generate false inputs capable of fooling the discriminator. If the
generative network cannot pass off the material as authentic, it will be discarded, and the
network will be notified how close it has come to the desired reference used as its training
model. This forces the network to try again. This is an iterative procedure that makes both
networks compete with each other, making GANs capable of producing, evaluating and
reworking any type of content. Hundreds of thousands or even millions of attempts can be
made before the discriminating network accepts the result offered by its rival. During all the
rejections that occur, the generative network learns, and that is the purpose of the
discriminating network. On the other hand, this network guides the generative network with
the information it gives it about its hit rates. In its beginnings, when they were first described
in 2014 (Goodfellow et al, 2014), this technology could generate 32 x 32 pixel images. In
2019 (Aila, 2019) the technology was sufficiently developed to generate faces of people that
did not exist at a quality of 1024 x 1024 pixels or generate audio based on the image content
(Lee, 2018) demonstrating the potential of these content creators to mix different domains.
As in other neural-based technologies, the main complexity of the GAN lies in the adjustment
of the hyperparameters that are essential to obtain adequate results.

For its part, the second group of generative models, the VAEs (Welling, 2014), follow an
encoder-decoder structure. In this way, the encoder is able to “summarize” the content of an
image in a set of vectors known as embeddings® (or latent space). The decoder, on the other
hand, learns to regenerate the original image from the description contained in the
embeddings. This encoder-decoder process is not new (Hinton, 2016). Typically, the latent
space produced by the encoder is sparsely populated, meaning that it is difficult to predict
the distribution of values in that space. Values are scattered and space will appear to be well
utilised in a 2D representation. This is a very good property for compression systems.
However, for content generation this sparsity is an issue because finding a latent value for
which the decoder will know how to produce a valid image is almost impossible. Then, the
main difference with previous deployments is that VAEs work by making the latent space
more predictable, more continuous, less sparse and, by forcing latent variables to become
normally distributed, VAEs gain control over the latent space. In this way, once the network
has been trained, the VAE can generate new (false) images from any point within the
embedding normalised space. The main problem with VAE technology is that the sampling
space is continuous, and the distribution of embeddings cannot always be precisely adjusted
to a normal distribution. This makes the generated images blurry or unrecognizable in many
cases. To overcome this obstacle, VQ-VAE (Vector-Quantized Variational Autoencoders)
(Kavukcuoglu, 2018) were created. They allow obtaining a library of embeddings and
studying their temporal distribution to ensure that they follow what is expected. In addition,
its discreet nature allows the use of Transformers (state-of-the-art deep learning models,
mostly used for NLP and Computer Vision tasks, that adopt the mechanism of attention
(Vaswani et al., 2017)) to model the aforementioned distribution. This approach has been
shown to be capable of generating more realistic images in addition to allowing text analysis

25 Word embedding is a learned representation of a text, where words that have the same meaning have a similar
representation. This approach to word and document representation can be considered one of the major advances of Deep
Learning in natural language processing problems.
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to be mixed for the generation of images. A last step has been to add a GAN structure (VQ-
GAN) (Esser, 2021) as a decoder to achieve a more context-specific embedding library
configuration and reducing the need for fine tuning of parameters.
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Figure 6. Readiness-vs-generality chart for audio-visual generation. We see that level 1
reaches TRL 9, especially because of the current capabilities of neural-based approaches for
content generation. Level 2 also reaches high TRL level 9 for non-static synchronised content
generation for some domains but still as prototype developments. Finally, level 3 requires
much more complex, innovative, and creative cross-domain content generation, which is still
at a very preliminary stage (TRLs 1-5) depending on the domains.

Because of the evolution of expectations and capabilities of audio-visual content generation
technology, we may define three different generality levels of audio-visual content
generation:

— Level 1 - Domain-specific data augmentation: In this case, generating approaches

are able to create new static content that follow the same distribution in which they have
been trained (e.g, performing crops, flips, zooms, eliminating noise in the image,
eliminating blurring, aging a face, increasing the resolution of an image, and other simple
transforms of existing images in the training dataset) creating new, artificial but plausible
examples from the input problem domain on which the model is trained.

Level 2 — Domain-specific, non-static, consistent, stable, synchronised data
generation: More complex (non-static) content that is created is consistent (both globally
and locally) and synchronised with the domain in which the generator is working (e.g.,
generating lip movement, elimination or reconstruction of parts of the image, ...).

Level 3 - Domain-general, creative, artistical, innovative data generation: Any
sort of audio or image content may be created regardless of the domain from which the
generation models have been trained. In other words, these generation approaches are
able to create new content outside the distribution where it has been trained (e.g., creating
artwork, combining unrelated concepts in plausible ways, rendering text, etc.).
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Within the first level we may find those generative approaches capable of creating new
content in very limited and specific environments. These are approaches that are generally
available on the market (TRL 9). Within this group we found desktop, web and mobile
applications that allow, for instance, to improve the resolution of input images, transform
photos from black-and-white to colour, repair images, generate artistic styles, etc. Photo
editing software suites, such as Adobe,?® are adding features of this type in some of its
applications. Also, the photo effects and filters used in applications such as Instagram?’ are
usually using these technologies. Finally, we may also find specific applications in the market
that allow users to create people’s faces that do not really exist (Nvidia, 2019).

Regarding the second level, we find more complex (non-static) generation approaches able
to generate consistent and synchronised new content with respect to the domain in which
the generator is working. In this regard, we may find prototype demonstrations (TRLs 5-7)
for the so-call deep fakes, synchronising speech-video inputs (e.g., lip movement) according
to a specific language (improving the speech realism), or for adding/modifying the facial
expressions/emotions of the speaker according to the sense of the speech through photo
animations (Zhang I. P, 2021). Further relevant demonstrations involve approaches for
generating new people’s voices or even new songs (Roberts, 2018), software tools for
transforming designs/sketches to realistic images of buildings (Efros, 2018) (Pan, 2019) for
the creation of architectural plans and 3D models given some parameters (Chaillou, 2019)
or descriptive text (Tan, 2020). On this level we also find more developed, market-ready
approaches (TRLs 7-9) used to modify, in pictures, the painting style (Kim, 2019), remove
specific, non-trivial content from images (Gao, 2020), make one person imitate the
movements of another (Zhang J. A, 2021), change gestures, facial parts or backgrounds
(Perov, 2020), etc. All of the above in a highly realistic way, it being difficult to distinguish
between a false image (partially or totally generated by computer) and real image.

Finally, the third level involves generative approaches capable of creating new content in
cross-domain settings (in which the generators have not been trained) having capabilities
closer to human-like creativity and generating images from texts or sounds, or vice versa.
Generative models at this level still have a long way to go (2-6), but research like DALL-E
(Ramesh et al, 2021) and CLIP (Radford et al, 2021; Galatolo et al, 2021) have
demonstrated the capacity of these networks and their potential to develop creativity. In the
case of the project DALL-E (Ramesh et al., 2021), it can generate false images from a text
description written in natural language. In the case of CLIP (Radford et al., 2021, Galatolo et
al, 2021), it is a generalist model trained with hundreds of thousands of images and text
taken from the internet. From this training, CLIP has been shown to be able to identify objects
in any image with any background and level of abstraction.

5.3 Communication

Computers exchange information all the time, but their format is predefined and formal.
However, humans exchange information and knowledge in much more complex ways,
especially through natural language. One big challenge of computers and Al has been
developing tools that allow humans and machines to communicate more smoothly in natural

26  https://www.adobe.com/creativecloud/photography.html
27  https://help.instagram.com/453965678013216
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language, and more generally about tools that can do some tasks related to language
processing. We have chosen two Al technologies that are very significant in natural language
processing: machine translation and speech recognition. These are two examples of Al
technologies that represent systems that (help) communicate.

5.3.1 Technology: Machine Translation

Machine translation (MT) is the automatic translation of texts from one language into another
language by a computer programme. While human translation is the subject of applied
linguistics, machine translation is seen as a subarea of artificial intelligence and computer
linguistics. At a basic level, originally machine translation was based on simple substitutions
of the atomic words of one natural language for those of another. Through the use of
linguistic corpora, more complex translations can be attempted, allowing for more
appropriate handling of differences in linguistic typology, sentence recognition, translation of
idiomatic expressions and isolation of anomalies. This translation process can also be
improved thanks to human intervention, for example, some systems allow the translator to
choose proper names in advance, preventing them from being translated automatically. MT
services have become increasingly popular in recent years, and there is an extensive range
of MT software and special tools available, enabling fast processing of large volumes of text.

Machine Translation
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Figure 7. Readiness-vs-generality chart for Machine Translation (MT) technology. TRL 9 has been
reached for the first two types of MT (MAHT and HAMT). Currently, FAMT approaches have reached a
crucial moment, with powerful market-ready products such as Google Translator or DeepL, and a
lively research community developing and testing new systems at the expense of the improvements
in neural-based approaches. The two FAHQT levels, either at controlled or uncontrolled scenarios, are
estimated to have very low TRW due to the current limitations in the area of MT.

In terms of capabilities of MT, we define five levels of machine-assisted translation (see
Figure 7) following the different types of translations already defined in the literature
(Hutchins et al. 1992). While the level of autonomy is key in the first three of these types,
and quality in levels 3 and 4, and these two factors are not necessarily aligned with levels of
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generality, we prefer to keep the original scale as the most interesting (challenging) levels
are 4 to 5 and do correspond with varying generality:

— Level 1 - Machine-assisted human translation (MAHT): The translation is
performed by a human translator who uses a computer as a tool to improve or speed up
the translation process.

— Level 2 — Human-assisted machine translation (HAMT): The source and/or the
target language text is modified by a human translator either before, during, or after it is
translated by the computer.

— Level 3 - Fully automatic (automated) machine translation (FAMT): This
represents automatic production of a low-quality translation from the source language
without any human intervention.

— Level 4 - Fully automatic high-quality machine translation in restricted and
controlled domains (FAHQMTT): This represents automatic production of a high-quality
translation from the source language without any human intervention in restricted and
controlled domains.

— Level 5 - Fully automatic high-quality machine translation in unrestricted
domains (FAHQMTu): This represents automatic production of a high-quality translation
from the source language without any human intervention in unrestricted domains.

For the first two levels, itis clear we already reached TRL 9 levels, with a myriad of translation
products® as well as dictionaries®* and, thesaurus®* in the market, helping to combine
machine and human-based translations.

In terms of current developments in FAMT (third level of capabilities), we have a number of
successful MT software and applications, Google Translator being the flag bearer in FAMT
(TRL 9). In some instances, MT services can replace human translators and dictionaries, and
provide (imperfect but satisfactory) translations immediately. This is the case when getting
the general meaning across is sufficient, such as with social media updates, manuals,
presentations, forums, etc. In this regard, current MT software and applications3! are best
suited when we need quick, one-off translations and accuracy is not of importance. Also, MT
applications are particularly effective domains where formal (structured) language is used.
Finally, it should also be noted that although the technology has reached a TRL 9, MT is
currently a hot area in Al in which numerous advances are being achieved using new neural-
based approaches (Sutskever et al, 2014), which have largely overcome the classical
statistical approaches.

In this setting, levels 4 and 5 correspond with the ultimate goal of MT. FAHQMT. As already
commented, MT produces more usable outputs than when translating conversations or less
standardised text. However, when aiming at professional translations of complex texts,
business communication, etc., MT does not constitute, currently, a genuine or satisfactory

28  https://www.sdl.com/, https://www.memog.com/ or https://www.wordfast.net/
29  https://www.wordreference.com/

30 https://www.thesaurus.com/

31 https://en.wikipedia.org/wiki/Comparison_of_machine_translation_applications
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alternative to qualified specialist translators.®> A number of scholars questioned the
feasibility of achieving fully automatic machine translation of high quality in the early
decades of research in this area, first and most notably Yehoshua Bar-Hillel (Yehoshua,
1964). More recently, some research (TRL 1 to TRL 3) is being carried out for restricted
scenarios (see, e.g., Muegge, 2006), corresponding with level 4. Level 5 is still considered a
utopia in MT (TRL 1) in the short or mid-term. The most obvious scenario is the translation of
literary texts: MT systems are unable to interpret text in context, understand the subtle
nuances between synonyms, and fully handle metaphors, metonymy, humour, etc.

5.3.2 Technology: Speech Recognition

Speech recognition comprises those techniques and capabilities that enable a system to
identify and process human speech. It involves sub-areas such as Speech Transcription (Seide
et al,, 2011) and Spoken Language Understanding (SLU) (Tur et al., 2011), among others, but
we will focus on the former. Although speech recognition first came on the scene in the 1950s
with a voice-driven machine named Audrey (by Bell Labs), which could understand the spoken
numbers O to 9 with a 90 percent accuracy rate (Juang et al., 2005), nowadays, speech
recognition programmes can recognise a virtually limitless number of spoken words, aided
by cognitive and computational innovations (e.g., pure or hybrid neural models combining
statistical approaches).

Speech Recognition

Limited voice Large-vocabulary Free speech Native—level free
commands continuous speech recognition in speech racognition
recognition systems restricted contexts in unrestricted
contexts

Figure 8: Readiness-vs-generality chart for speech recognition technology. TRL 9 has clearly been
reached for narrow systems with limited voice commands or conversational interface such as those
shown by the widespread VAs like Amazon’s Alexa, Apple’s Siri, etc. Current research is going towards
more advanced speech capabilities including vocabulary size, speaker independence and attribution,
processing speed, etc. Low TRLs are estimated for systems showing native-speaker language
understanding capabilities.

Because of the evolution of expectations and capabilities of speech recognition technology,
the x-axis of Figure 8 uses four different generality levels:

32 https://en.wikipedia.org/wiki/Machine_translation
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— Level 1 - Limited voice commands: Predefined instructions or voice commands in the
recognition system with a particular (formal) syntax using, e.g., limited speech
dictionaries.

— Level 2 - Large-vocabulary continuous speech recognition systems: Restricted-
domain speech recognition systems with larger vocabularies for spoken (formal and
informal) words and phrases, some interaction with the user, high levels of robustness
and accuracy of data, endpoint detection, no speech timeout, etc.

— Level 3 - Free speech recognition in restricted contexts: Open-ended vocabulary
(formal and informal), far-field (remote) sources, speaker attribution, full transcription
from any audio/video source, and able to deal with noise, echo, accents, disorganised
speech, etc.

— Level 4 — Native-level free speech recognition in unrestricted contexts: Native-
speaker multi-language recognition in adversarial environments, involving complete
processing of complex language utterances, spontaneous speech, confusability, speaker
independence, etc., under (possibly) adverse conditions.

For the first level, we find those voice recognition systems allowing predefined and limited
system proprietary voice commands to perform specific instructions. We are able to find this
technology in the market (TRL 9) since the 1980s in different products and applications, from
voice-controlled operating systems (see e.g., the “Speakable Items” (Wallia, 1994) in Mac OS
in the 1990s) to toys (see, e.g., the Worlds of Wonder's Julie doll 3 in the 1980s) or in-car
voice recognition systems (Tashev et al., 2009)

For the second level, common applications today include voice interfaces in robots, digital
assistants or specific software such as voice dictation, voice dialling or call routing, domotic
appliance control, preparation of structured documents, speech-to-text processing, and
aircraft (e.g., direct voice input allowing the pilot to manage systems). Note that although all
the above-mentioned speech recognition-powered products and software are market-ready
products (TRL 9) with high levels of robustness and accuracy, the capabilities achieved by
these systems are still limited to restricted domains, also having problems with noise
environments, different accents, disorganised conversations, echoes, speaker distance from
the microphone, etc.

Level 3 is still largely in research and evaluation phases; it is limited in that current
approaches (e.g., language models and acoustic models) cannot handle the complexities of
a free speech recognition application in unrestricted contexts with multiple speakers for a
myriad of languages and different regional accents for the same languages. Furthermore,
even in controlled contexts with a limited dictionary, there is still a lack of accuracy with
common misinterpretations. Therefore, we can say that the technology achieving these
capabilities is still a matter of research, prototyping and testing (TRLs 3-7).

Finally, much more advanced capabilities in terms of a complete natural (multi-)language
recognition in complex and unrestricted scenarios (as adult native speakers would do for their
mother tongue) is still a long-term goal today for the research in the area (given the state
being at TRL 1 to TRL 3). Working under adverse conditions (e.g., noise, different accents,

33  http://www.robotsandcomputers.com/robots/manuals/Julie.pdf
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complex language utterances, etc.) will be eventually solved in the short or medium term as
they are problems that can be addressed with larger datasets and models. However, more
complex scenarios such as language-independent speech recognition including the
understanding of non-explicit information such as the use of prosody, emotions, meaningful
pauses, intentional accents or even “mind reading” (e.g.,, speaker intention modelling) are
clearly more long-term goals in the field.

5.3.3 Technology: Massive Multi-modal models

In less than a decade, research in Natural Language Processing (NLP) has been overturned
by the appearance of a suite of language models (LM) trained in an unsupervised manner on
very large corpora. These language models (or foundation models (Bommasani et al., 2021)),
based on the use of various statistical and probabilistic techniques to determine the
probability of a given sequence of words occurring in a sentence, have proved capable of
“capturing” the general linguistic characteristics of a language. Moreover, these models can
be adapted (e.g., fine-tuned) to a wide range of downstream tasks.

On a technical level, LMs are enabled by (1) transfer learning (Thrun 1998) (i.e., to take the
“knowledge” learned from one task and apply it to another task) and (2) scale (ie,
improvements in computer hardware, model architectures and the availability of much more
training data). Actually, the technologies behind LMs are not new: they are based on deep
neural networks and self-supervised learning, both of which have existed for decades. Current
models (including BERT (Devlin et al. 2019), GPT-3 (Brown et al., 2020), and CLIP (Radford et
al., 2021)) are based on a simple yet powerful architecture called Transformer (Vaswani et
al, 2017), considered the latest major technological revolution in the field of NLP. The key to
success of this approach is the use of an attention mechanism which allows you to search
for relationships with all words in the context and to rely on the most similar words to improve
prediction, whatever their position in context. This is a big change from previous technologies
such “Recurrent Neural Networks” or “Convolutional Neural Networks” which could model
contextual dependencies, but they were always constrained by referencing words by their
positions. Attention is about referencing by content.

The spectacular progress associated with LM does not so much come from its ability to
generate texts, but rather to carry out tasks after being exposed to a very small number of
examples (“few-shots learning” (Wang et al., 2019)), without the underlying Neural Network
learning model having been explicitly supervised for this purpose. In this regard, in terms of
capabilities of LM, we define three levels based on learning and generalisation: (see Figure
9).

— Level 1 - Learn broadly applicable priors from large, diverse datasets:
Transferability of meta-knowledge across domains and adaptability to linguistics tasks
in different scenarios and languages.

— Level 2 — Generalisable task specification: Learning across more complex (non-
linguistic) tasks, inputs (perceptual sources such as audio & video) and environments.

— Level 3 — Reasoning and common-sense capabilities to perform high-order skills (e.g.,
physics & dynamics, theory of mind, temporality, causality, etc.).
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Figure 9: Readiness-vs-generality chart for massive multi-modal models technology. While high TRLs
have been reached by LM when addressing natural language-related tasks, lower TRLs are estimated
when moving to more complex tasks, domains or environments, or when demand higher levels of
reasoning skills.

For the first level, we have seen that the scope of LM over the last few years has been
adapted via natural language prompts to do a more than acceptable job on a wide range of
NLP-related tasks despite not being trained explicitly to do many of those tasks (Brown et
al.,, 2020). Many LMs are skilled language generators. For instance, GPT-3 (Brown et al., 2020)
can create anything that has a language structure: answer questions, write essays,
summarize long texts, translate languages, take memos, create computer code, etc., in a way
that is almost indistinguishable from how a human would do it (Clark et al., 2021). However,
although LMs are surprisingly versatile with the linguistic knowledge they obtain from
pretraining, there are still limits to this adaptability. It is not clear how successfully current
LMs may handle language variation, formality and linguistic diversity (Ponti et al., 2019;
Bender 2011; Joshi et al., 2020) due to, among other things, the lack of enough (text) data
to train large-scale LMs. Still, multilingual LMs have been released to extend that success to
non-English languages by jointly training on multiple languages at the same time, and the
multilingual foundation models to date (mBERT, mT5, XLM-R) are each trained on around
100 languages (Devlin et al. 2019; Goyal et al.,, 2021; Xue et al., 2020). However, the extent
to which these models are robustly multilingual is still an open question (Lauscher et al.,
2020; Virtanen et al., 2019; Artetxe et al., 2020).

Regarding level 2, we are beginning to see the use of similar Transformer-based sequence
modelling approaches across different research communities, and multi-modal LMs have
been applied to images (Dosovitskiy et al., 2020; Chen et al., 2020d), speech (Liu et al., 2020),
tabular data (Yin et al., 2020), protein sequences (Rives et al., 2021), organic molecules
(Rothchild et al., 2021), and reinforcement learning (Chen et al., 2021; Janner et al., 2021).
Notables are the examples for visual synthesis, including DALL-E (Ramesh et al. 2021) and
CLIP-guided generation (Radford et al. 2021; Galatolo et al, 2021), where researchers
leverage multimodal language and vision input to render compelling visual scenes. Still, and
relative to the broader aims of the field, the current capabilities of multi-modal models are
currently early-stage (TRLs 3-5): the previous promising early efforts are still largely centred
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on RGB image inputs and a subset of core traditional vision tasks. However, the field
continues to progress on broader challenges centred on embodied and interactive perception
settings.

Regarding those more advance functionalities in the third level, in the short-term, we may
anticipate that the capabilities of massive multi-modal language models will continue to
improve along the above directions (particularly with respect to generalisation capability
(Radford et al.,, 2021; Ramesh et al., 2021), as training objectives are refined (Chen et al.,
2020; Henaff et al., 2021; Selvaraju et al., 2021) and neural architectures are designed to
incorporate additional modalities (Jaegle et al., 2021b). Still, it remains a matter for research
(TRLs 1-3). For its part, in the longer-term, the potential for massive multi-modal language
models to reduce dependence on explicit annotations may lead to progress on essential
cognitive skills (e.g., reasoning and common-sense capabilities) which have proven difficult
in the current, fully supervised paradigm (Zellers et al., 2019a; Martin-Martin et al., 2021).
Improving high-level reasoning capabilities is thus a core challenge for existing LMs: generate
high-level plans emulating the way humans perform abstract reasoning, high-level planning
and coordination in tackling difficult problem-solving tasks (Miller et al., 1960). For the
moment, LMs tend to focus solely on predicting the next low-level steps (Polu and Sutskever,
2020; Han et al, 2021; Chen et al, 2021). This can be thought of as a data collection
challenge (data for high-level reasoning is scarce and difficult to collect except for limited
settings (Li et al., 2021)). Another line would be to investigate how abstract hierarchies of
new capabilities emerge and are built progressively by themselves during learning capturing
the structure of the input domain (Ellis et al., 2021; Hong et al., 2021), but it still remains an
open question how to scale these approaches to more general and realistic settings.

5.4 Perception

Perception is a capability that we find in most animals, to a greater or lesser extent. In
humans, vision is usually recognised as a predominant sense, and Al, especially in recent
years, has given this predominance to machine vision.** Even if we just cover vision discussed
below, we select two important technologies, facial recognition and text recognition, with very
different perception targets, representing two good examples of Al technologies that
incarnate systems that perceive.

5.4.1 Technology: Facial Recognition

A facial recognition system is a biometric technology capable of identifying a person from a
digital image or a frame from a video source. In general, the facial recognition pipeline
follows three main steps: (i) detection of faces in the input image or video frame; (ii)
extraction of a set of features from each detected face, forming a so-called biometric
template; and (iii) face matching, which compares each extracted biometric template to those
from reference images pre-enrolled in a database and computes corresponding similarity
scores. When a similarity score is above a certain threshold (usually configurable by the user),
then an identity match is considered.

34 This predominance is perhaps exaggerated, at least with a view of AI as achieving intelligent behaviour. People who are
blind from birth are the proof that full cognitive development is possible without sight.
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In the last decade, facial recognition has gained significant attention, becoming an active
research area in both industry and academia. It covers various disciplines, including image
processing, pattern recognition, computer vision, high-performance computing and neural
networks. It is nowadays widely established as one of the most flexible biometrics, capable
of automatically identifying people at long distances in a non-intrusive manner.

There is a myriad of scenarios in which a face recognition system can be deployed, ranging
from border control (Rodriguez et al., 2018) (e.g., at an airport gate) or access control (Wang
et al., 2020) (at the entrance to a building, a workplace, etc.) to video-surveillance (Barquero
etal, 2021) (e.g., of a critical infrastructure or a crowded place). In most contexts, it is critical
that the system is able to work in real-time, to rapidly notify about an identified blacklisted
person or to prevent unwanted subjects from accessing certain areas. Ideally, face
recognition should also be robust when confronted with scenes with changing lighting
conditions (such as an outdoor space) or where people’s head pose and occlusions (e.q.,
because of wearing sunglasses, hats, scarfs, etc.) cannot be controlled.

The latter are classic challenges for face recognition technology. However, new issues have
arisen in very recent years, driven by societal changes. On the one hand, several companies
- including Microsoft and IBM — have been criticised for rolling out facial recognition software
that is more accurate for some demographics than others. Specifically, these systems tend
to accurately identify fair-skinned men far more often than they identify darker-skinned
women (Buolamwini et al., 2019; Hupont et al., 2019). Face recognition should be fair and
universal, being able to identify subjects with high accuracy regardless of their gender, age
and ethnicity. On the other hand, two key recent events, namely the growing threat of
massive terrorist attacks (e.g., Bataclan, Paris 2015; Breitscheidplatz, Berlin 2016; Rambla,
Barcelona 2017; Manchester Arena 2017) and the COVID-19 pandemic, have boosted the
need to employ facial recognition systems in increasingly complex situations. There is a need
to cover larger-scale and more unconstrained environments (e.g., large indoor/outdoor highly
crowded places), and to accurately identify people even when wearing medical face masks.

Because of this wide variety of contexts and challenges related to face recognition
technology, the x-axis of Figure 8 uses five different generality levels:

— Level 1 - Facial verification: Also called face authentication, it is the simplest face
recognition scenario. It is a one-to-one (1:1) problem, that computes the similarity score
between a query (“live”) face and a reference facial image of a known person (Masi et al.,
2018). It verifies that this person is who she claims to be, and thus needs some
cooperation from her (e.g., the person must be willing to pose in front of a camera for
unlocking a smartphone (Olade et al., 2018) or at airport check-ins). Generally, both query
and “live” images are of high quality, showing full-frontal faces in controlled scenarios in
terms of illumination, camera resolution, background and facial occlusions.

— Level 2 - Facial recognition under controlled situations: In this scenario, face
recognition is formulated as a one-to-many (1:N) query for a given face against a
database of known faces (for instance, a blacklist of N persons, a list of N authorised
persons or users). Faces are detected and identified without requiring the active
cooperation of individuals (Kortli et al., 2020). At this level the environment is low-to-
moderately crowded and controlled in terms of illumination, camera position and head
pose (cameras are located so that faces are frontal or near-frontal). Examples include
automatic face tagging in social media and access control at the entrance of a building.
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— Level 3 — Facial recognition under unconstrained situations: 1:N face recognition

TRL

in moderately-to-highly crowded situations, with lower resolution faces (<100 x 100
pixels), poorer or changing illumination conditions, and where strong head poses (>30° in
yaw/pitch/roll), facial expressions, changes in facial appearance and facial occlusions may
happen (Barquero et al,, 2021). Typical use cases at this level are related to the video-
surveillance of crowded open/public spaces (e.g., a frequented street, a shopping mall, a
train platform at rush hour, etc.) to help law enforcement bodies identify individuals under
search or to find missing persons.

Level 4 - Demographically unbiased facial recognition: Most typical face
recognition contexts require the analysis of people from very different nationalities,
ethnicities, physical appearance and age (such as an airport with flights arriving from
different continents, international events, etc.). This level extends the previous one by
including fair, universal and trustworthy face recognition models able to identify persons
with high accuracy regardless of demographic factors such as age, race, gender or facial
appearance (hairstyle, facial hair, body weight, etc.).

Level 5 — Partially occluded facial recognition: This level covers face recognition
systems not only able to deal with unconstrained and unbiased face recognition, but also
to identify persons even when wearing a medical mask which may occlude up to 60% of
the face.

Facial Recognition

Facial Facial Demographically Partially
verificabion g recognition unbiased Facial occluded facial
under controlled under recognition recognition
situations unconstrained
situations

Figure 10: Readiness-vs-generality chart for facial recognition (FR) technology. TRL 9 has been
clearly reached for face verification and FR in controlled environments, with a number of commercial
systems being deployed for different applications (access control, security, smartphone unlocking,
social media, etc.). Facial recognition systems under unconstrained situations (such as crowded
train/metro stations or public spaces) are also currently being tested, demonstrated and - less
frequently - fully deployed in operational environments, mostly for law enforcement purposes (TRLs
between 5 and 9). Lower TRLs are estimated when these sorts of systems are confronted with
demographically varied contexts, where their behaviour is expected to be fair and unbiased (TRLs 3
to 5). Finally, post-pandemic FR is still in its initial phase of technological readiness (TRLs 1 to 4),
since most of the current systems are not capable of coping with the strong facial occlusions caused
by the use of medical masks.
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Regarding level 1, most current facial recognition systems excel in matching one “live” facial
image to a reference one, when both are taken in controlled situations (e.g., in a photo booth,
with a high-resolution smartphone camera, driving license/passport photo, etc.). Nowadays
we find many market-ready facial verification applications (TRL 9) applied to different areas:
security® (e.g., to grant access to critical infrastructures), financial services3¢ (digital
payments, online account access, etc.), border/boarding control®’ (at airports, train stations,
etc.), among others. These systems rely on full frontal high-resolution facial images with
uniform illumination and no occlusions to achieve those high levels of predictive accuracy.
Moreover, as they depend on the cooperation of the person and given the sensitivity of the
use case, they usually prioritise having very low False Acceptance Rates (FAR): if the system
is unsure about the identity of the person (i.e., the similarity score is below the chosen
threshold), it might ask her to repeat the shooting up to several times until being fully certain
about the prediction, which boosts even further their reliability.

Level 2 no longer depends on the cooperation of individuals, so that similarity scores are
computed between the “live” image and each of the N reference persons to determine an
identity match. This fact might impact facial recognition performance with regard to level 1,
especially as N increases, but with images being taken in controlled situations, the predictive
accuracy is still very high. A great number of applications corresponding to this level are
widely established in the market (TRL 9). The most popular ones include social media tagging
(i.e. to automatically recognise when its members appear in photos3®) and access control (e.g.
to workplace,®® to prevent unauthorised persons to access critical infrastructures®® such as
hospitals or government buildings, gambling addicts to enter casinos,*! etc.).

As for level 3, facial recognition outside of a controlled environment involves addressing
much more complex factors. From the technical perspective, and boosted by the emergence
of Deep Learning, most research effort in the facial recognition community has been devoted
to bridge the gap between level 2 and 3 in the last five years. New very large and “wild”
datasets and benchmarks have been publicly released to train and validate models for facial
recognition able to cope with unconstrained faces (Huang et al.,, 2008; Guo et al., 2016; Zhu
et al., 2016). Novel deep architectures and training techniques have been designed to
compare and predict potential matches of faces regardless of their illumination, head pose,
occlusions, changes in expression and facial appearance (Scroff et al., 2015; Liu et al., 2021;
Huang et al., 2020). State-of-the-art unconstrained facial recognition models have now
saturated accuracy for most popular public facial benchmarks,*? which brings them to TRL
5. A step further is achieved by systems taking part in the Face Recognition Vendor
Test (FRVT43), which is a periodical internal benchmark by the US National Institute of
Standards and Technology (NIST). FRVT’s results are obtained following a strict protocol
emulating a real operational environment (time-constrained tests against at least six
collections of photographs with multiple images of more than 8 million people), which pushes
participating systems to a TRL 7. Nevertheless, reaching final TRLs at the third generality
level is not only a technical matter. Current plans to install facial recognition systems in
unconstrained crowded public places are subjected to criticisms from civil society

35 https://www.idemia.com/facial-recognition-access-control

36 https://en.facephi.com/industries/financial-services

37  https://www.airportveriscan.com/

38 https://www.facebook.com/help/122175507864081

39 https://ntechlab.com/solution/corporate-safety/

40  https://hertasecurity.com/facial-recognition-access-control-software/

41  https://securitytoday.com/articles/2019/10/29/major-casino-game-company-will-add-facial-recognition.aspx
42  https://paperswithcode.com/sota/face-verification-on-labeled-faces-in-the

43  https://pages.nist.gov/frvt/reports/1N/frvt_1N_report.pdf
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organisations as well as bans from authorities.#* For instance, a prior approval is needed for
TRL 8 in Europe and the US. For that reason, there is a limited number of initiatives testing
and demonstrating systems in different operational and real-world scenarios (TRLs 7-8) such
as bus stations,#> airports or sport stadiums (Galbally et al., 2019). Large video-surveillance
and security systems currently operating at TRL 9 are mostly deployed in less privacy-
concerned countries such as China (see YITU Dragon Eye products used in Shanghai Metro#®),
India%’ or Uruguay.*®

In level 4, facial recognition models need to be invariant to demographic diversity. The key
ingredient for success is the use of large amounts of training data to cover the widest range
of variations in demographics (age, gender and race). However, most popular facial datasets
and benchmarks, such as the widely used Labeled Faces in the Wild (Serna et al., 2020), are
remarkably biased, containing a vast majority of white (up to 90%) and male (up to 75%)
faces. This implies that any model trained or validated on them will inexorably show similarly
biased patterns, favouring the majority race and gender data in the training set (Fu et al,,
2014). Indeed, state-of-the-art face recognition models suffer from very structured and
damaging demographic biases (Hupont et al., 2019), making them not yet ready for
operational environments. Given the importance of the problem, the NIST recently extended
its FRVT protocol to study demographic effects*® at TRL 5, and found a dramatic drop in
performance for facial recognition systems when trying to recognise people of different race
or gender (e.g., FAR varying by factors up to 100 times in the case of race). Some pioneering
works have started to provide public demographic-aware benchmarks (Hupont et al., 2019;
Robinson et al., 2020) and address the problem algorithmically (Serna et al., 2020), but
efforts are still below TRL 5.

Level 5 of generality arose from one day to next, by mid-March 2020, as a response to the
COVID-19 pandemic. On the one hand, the sanitary crisis has strengthened the position of
facial recognition as a the most suitable biometric for touchless and distant access control,
not requiring the manipulation of access security cards or to put a finger on a device shared
by hundreds of persons. On the other hand, a new and great technical challenge emerged:
the vast majority of face recognition models to date were not sufficiently robust to deal with
largely occluded faces, where the upper face is the only visible part. Developers had to rapidly
adapt their algorithms to support face recognition on subjects potentially wearing face
masks, without losing accuracy for unmasked persons. Since then, an increasing number of
research publications have surfaced on the topic (Deng et al.,, 2021; Wang et al., 2021) along
with new face-masked datasets (Wang et al., 2021). As a consequence of this rush, a number
of commercial providers have already announced the availability of face recognition systems
capable of handling face masks>° and the NIST has extended its FRVT protocol to test the
performance of pre- and post-pandemic algorithm behaviour when confronted with masked
faces.>! About 200 face recognition models were tested by the NIST under a verification (1:1)
scenario, by applying synthetic masks to real border crossing photos. Results showed that

44 Some examples include: https://www.euractiv.com/section/data-protection/news/german-ministers-plan-to-expand-
automatic-facial-recognition-meets-fierce-criticism/, https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-
francisco.html or https://www.politico.eu/article/european-parliament-ban-facial-recognition-brussels/.

45 https://algorithmwatch.org/en/spain-mendez-alvaro-face-recognition/

46 https://www.yitutech.com/en

47  https://www.independent.co.uk/life-style/gadgets-and-tech/news/india-police-missing-children-facial-recognition-tech-
trace-find-reunite-a8320406.html

48 https://www.prnewswire.com/news-releases/facial-recognition-in-uruguayan-football-680914081.html

49 https://nvipubs.nist.gov/nistpubs/ir/2019/NIST.IR.8280.pdf

50 https://www.bbc.com/news/technology-55573802

51 https://pages.nist.gov/frvt/html/frvt_facemask.html
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post-pandemic algorithms surpass pre-pandemic ones, but still failed to authenticate
between 10% to 40% of masked images. Nevertheless, this in-lab test setup is yet very
limited (TRL 4) and there is a long way to go towards the “new normality” era of face
recognition.

5.4.2 Technology: Text Recognition

Text recognition is the process of digitising text by automatically identifying symbols or
characters from an image belonging to a certain alphabet, making them accessible in a
computer-friendly form for text processing programmes or the like. Text recognition involves
both offline recognition (e.g., input scanned from images, documents, etc.) and online
recognition (i.e., input is provided in real time from devices such as tablets, smartphones,
digitisers, etc.). Here we will focus on the former. Large amounts of written, typographical or
handwritten information exist and are continuously generated in all types of media. In this
context, being able to automate the conversion (or reconversion) into a symbolic format
implies a significant saving in human resources and an increase in productivity, while
maintaining or even improving the quality of many services. Optical character recognition
(OCR) has been in regular use since the 1990s, developed significantly with the widespread
use of the fax by the end of the 20th century. Today, it is already in wide use, but the
possibilities and requirements have evolved with a more digital society.

Figure 11 tries to model the evolution of expectations in terms of the different capabilities
of text recognition technology through the following levels of generality:

— Level 1 - Template-based typewritten and handwritten character recognition:
Recognition of typewritten and handwritten characters in structured documents (e.g.,
postal systems, bank-check processing, passports, invoices, etc.).

— Level 2 - Free-form handwritten character recognition: Recognition of (non-
)separable/segmentable handwritten characters with automatic layout analysis in
unstructured documents.

— Level 3 - Free-form unconstrained handwritten word recognition: recognition of
unconstrained
(non-)separable/segmentable handwritten words in unstructured documents.

— Level 4 - Complex non-pundit-readable text recognition: Recognition,
interpretation and deciphering of non-pundit-readable media (e.g., ancient or badly
damaged) unconstrained texts in any format.
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Figure 11. Readiness-vs-generality chart for text recognition technology. TRL 9 has been clearly
reached by OCR systems. For free-form character recognition, current developments in machine
learning and computer vision are improving the performance of these systems, where we may find
prototypes for testing and demonstrating new capabilities as well as market-ready products (TRL 5
to TRL 9). More advanced capabilities in terms of unconstrained, free-form recognition of handwritten
text is still a matter of research and development (TRL 2 to TRL 6). Very low TRLs are estimated for
text recognition systems addressing the interpretation and deciphering of non-human-readable
media.

For level 1 we find the simplest (and most common) form of character recognition: template-
based optical character recognition (OCR). OCR, as a technology, has been instrumental in
automating the processing of managing physical typewritten documents. For instance,
enterprises using OCR software can create digital copies of structured documents such as
invoices, receipts, bank statements and any type of accounting documents that needs to be
managed. Passports, and other forms of structured documentation that need to be managed,
are also the target of OCR software. The accuracy of these systems is dependent on the
quality of the original document, but levels are usually around 98% or 99% for printed text
(Holley 2009), which is good enough for most applications, or 95% when addressing, for
instance, very specific handwritten recognition tasks such as postal address interpretation
(see, e.g., (Srihari et al., 1997)). Most commercial products and software are of this type (TRL
Q)52

Currently, OCR technology has been improved by using a combination of machine learning
and computer vision algorithms to analyse document layout during pre-processing to pinpoint
what information has to be extracted. This technology is usually called “Intelligent Character
Recognition” (ICR) and targets both unconstrained typewritten and handwritten text, imposing
new challenges on the technology. This represents thus the second level of capabilities in
Figure 9. Because this process is involved in recognising handwriting text, accuracy levels
may, in some circumstances, not be very good but can achieve 97-99% accuracy rates in
structured forms when handling capital letters and numbers (Ptucha et al,, 2019) which are
easily separable/segmentable, but it fails when addressing more complex scenarios such as

52  https://en.wikipedia.org/wiki/Comparison_of_optical_character_recognition_software
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unconstrained texts or non-separable (e.g., cursive) handwriting. However, these error rates
do not preclude these systems from massive use, with plenty of ICR products and software
currently in the market®® (TRL 9). It is also an active area of research (see, e.g.,, Bai et al.,
2014; Oyedotun et al., 2015; Yang et al,, 2016; Ptucha et al.,, 2019) where new alternatives
(e.g., neural approaches) are being developed and assessed.

Level 3 capabilities represent further advancements in this sort of technology involving
recognition of unconstrained (i.e, non-easily separable/segmentable) and free-form
handwritten word (instead of “character”) recognition.®* “Intelligent word recognition” (IWR)
technologies® may fall within this level. IWR is optimised for processing real-world
documents that contain mostly free-form, hard-to-recognise data fields that are inherently
unsuitable for ICR. While ICR recognises on the character-level, IWR works with unstructured
information (e.g., full words or phrases) from documents. Although IWR is said to be more
evolved than hand print ICR, it is still an emerging technology (TRL 5 to TRL 9) with some
products performing capabilities to decode (scanned) printed or handwritten text (see, e.g.,
Google Vision API®® used in Google Docs®” and Google Lens app®®), as well as number of
prototypes being tested and validated in relevant environments (Yuan et al., 2012; Acharyya
et al, 2013).

Finally, much more advanced uses of text recognition systems would be, for instance, to
interpret ancient or badly damaged texts that can only be deciphered by experts in the field
or even not deciphered by humans. Along this line we nowadays find some efforts in terms
of research and projects (see, e.g., Lavrenko et al., 2004; Sanchez at al., 2013; Granell et al.,
2018; Toselli et al, 2019), but without going beyond successful validations and
demonstrations from laboratory to relevant scenarios (TRL 2 to TRL 6).

5.5 Planning

In this Al category, “planning” usually deals with choosing the best sequence of actions
according to some utility function, whereas “scheduling” is about arranging a set of actions
(or a plan) in a timeline subject to some constraints. Not surprisingly, this is one of the areas
in Al that had early successful applications in different domains. We choose transport
scheduling systems as a well-delineated example of an Al technology that represents
systems that plan.

5.5.1 Technology: Transport Scheduling Systems

Transport scheduling refers to those tactical decisions associated with the creation of vehicle
service schedules (also called “timetabling”) aiming at minimising net operating costs (Boyle,
2009). In order to determine an appropriate vehicle schedule, there are also other factors
that have a direct effect on the operating costs: the number of vehicles required; the total
mileage and hours for the vehicle fleet; as well as the crew schedule. These activities are
usually assisted by software systems with or without direct interaction with the planner in

53 See http://www.cvisiontech.com/library/ocr/text-ocr/intelligent-character-recognition-software.html,
https://abbyy.technology/en:features:ocr:icr or https://www.scanstore.com/Forms_Processing_Software/ICR_Software/

54 Note that the transcription at further levels (e.g., line or paragraph) goes beyond this technology as it involves other
technologies such as (joint) line segmentation (Bluche, 2016).

55 https://www.efilecabinet.com/what-is-iwr-intelligent-word-recognition-how-is-it-related-to-document-management/,
https://content.infrrd.ai/case-studies/global-investment-firm-uses-infrrds-intelligent-data-processing

56 https://cloud.google.com/vision/docs/handwriting

57 https://docs.google.com/

58 https://lens.google.com/
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charge. This sort of system takes as input several parameters, including the frequency of
service in different routes, the expected travel times, etc.,, as well as different operating
conditions and constraints (e.qg., “clockface” values, vehicle reutilisation/repositions, layovers,
coordination of passenger transfers, number of vehicles, etc.), to generate high-quality
solutions (e.g., departure times).

Because of the evolution of the expectations and capabilities of transport scheduling
technology, the x-axis of Figure 12 uses three different generality levels described as follows:

— Level 1 - Specific-purpose offline scheduling: All the information is available

TRL

beforehand with no uncertainty, which can be used as an input and an optimised schedule
is output. The particularities of the domain are embedded into the system and only the
data are given as an input.

Level 2 — Specific-purpose online scheduling/rescheduling: All or part of the input
information comes in real time, with uncertainty in measurements or in the information
(e.g., a train that should arrive at 3:30 but instead arrives at 3:40). Still, the particularities
of the domain are embedded into the system.

Level 3 — General-purpose online scheduling/rescheduling: The information also
comes in real-time and with uncertainty, but the system is now designed to be extended
with new subsystems that have different specific behaviours. For instance, a train station
scheduling system can include the behaviour, utilities and constraints of bus and metro
subsystems connecting with the station, as well as events in the city, and optimise
globally.

Transport Scheduling systems

Specific-purpose Specific-purpose General-purpose
u”me&t'lec:L‘lmg online schedu ing/ online scheduling/

rescheduling rescheduling

Figure 12: Readiness-vs-generality chart for transport scheduling system technology. The range of
software systems that are able to perform offline and online scheduling for particular domains
implies a TRL 9 for the first two levels. More general-purpose scheduling systems have a lower TRL
of between 3 and 7.
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Although, traditionally, transport timetables have been manually generated (e.g., using time-
distance diagrams (Chakroborty et al., 2017) where schedules are manually adjusted to meet
all the constraints), this process can take a long time and it is unfeasible when dealing with
highly loaded transport networks. At level 1 of generality, computer-based scheduling and
planner systems have appeared in recent decades to provide automated and optimised
transport scheduling for vehicles and drivers. These systems have been launched, after years
of research, for different areas of application (TRL 9) including, among others: (a) trains
(Ghoseiri et al., 2004; Ingolotti et al., 2004; Abril et al., 2006) with a huge number of
commercial products such as RAILSYS,*® OTT®® or MULTIRAIL;%* (b) flights (Feo et al, 2009),
also with a myriad of commercial applications such as FLIGHTMANAGER,®? OASIS®® or
TAKEFLIGHT;®* (c) buses and shuttles (Gavish et al., 1978), with software platforms such as
GOALBUS,%® TRIPSPARK®® or REVEAL®” (d) maritime transport (Meng et al, 2014) with
commercial software such as MJC2,%8 or MES;®® or (e) road transport (Térnquist, 2006), with
software products such as PARAGON™ or PARADOX.”* Note that all these systems are
specialised (or adapted) for performing in very particular scenarios, and there is no general-
purpose tool.

For level 2, we consider that the input information can be provided online, so an automated
scheduling system needs to process it in real time. The systems should have then two parts:
offline scheduling (for known information), and online rescheduling. While the former
oversees scheduling vehicles and crews from known information, the latter has to be applied
in response to the new specific needs and/or incidents that may appear. The schedules have
to be dynamically updated balancing the resources (vehicles, timeslots, crew, etc.) available.
Examples of real-time requirements or incidents may be, for instance, to meet specific travel
demands or requests of passengers (e.g., new stops), to adapt to perturbations or problems
regarding resources/demand (e.g., failures in vehicles), or manage new schedule intervals
between new events (e.g., as volcano eruptions or heavy weather-related issues), etc. Dealing
with real-time needs also entails that scheduling systems have to be able to confront
different levels of uncertainty in terms of measurements or in the information they are
provided (e.g., a train should arrive at 3:30 but it instead arrives at 3:40). Like in level 1, we
are able to find plenty of research in this regard (see, e.g., Eberlein et al., 1998; Fu et al,,
2002; D’Ariano et al., 2008; Verderame et al., 2010; Wegele et al.,, 2010; Reiners et al., 2012)
as well as market-ready applications (e.g., MJC272 for road traffic, TPS”® for trains, OPTIBUS™
for bus/shuttles) applied to different transport scenarios, this implying a TRL 9 for this sort
of more capable scheduling systems.

Finally, for the third level, we introduce a further level of generality in terms of these systems
being able to be extended to any sort of transport scheduling problem with a combination of
other transportation systems and other constraints and utility functions (e.g., a coach service

59  https://www.rmcon-int.de/railsys-en/

60 https://www.via-con.de/en/development/opentimetable/

61  https://www.oliverwyman.com/our-expertise/insights/2013/jan/multirail-pax-_-integrated-passenger-rail-planning-.html
62  https://www.topsystem.de/en/flight-scheduling-1033.html

63  http://www.osched.com/

64  https://tflite.com/airline-software/Passenger-Service-System/flight-schedule/

65  https://www.goalsystems.com/en/goalbus/

66  https://www.tripspark.com/fixed-route-software/scheduling-and-routing

67  http://reveal-solutions.net/bus-routing-scheduling-software/bus-scheduling-software-101/

68  https://www.mjc2.com/transport-logistics-management.htm

69  https://cirruslogistics.com/products/marine-enterprise-suite/

70  https://www.paragonrouting.com/en-gb/our-products/routing-and-scheduling/integrated-fleets/
71  https://www.paradoxsci.com/transportation-logistics-software-rst

72  https://www.mjc2.com/transport-logistics-management.htm

73  https://www.hacon.de/en/solutions/train-capacity-planning/

74  https://www.optibus.com/
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combined with a train service). However, having general-purpose scheduling software
systems is more difficult due to the varietal intrinsic characteristics of each scenario (it is not
the same scheduling a fleet of trucks based on road-traffic characteristics as scheduling
flights based on airflows, hub banking and other flight characteristics). However, although
the previously introduced products and software platforms are all domain-specific systems,
the task of automating scheduling or timetabling (as a multi-objective constrained
optimisation problem) is a general problem creating a feasible/optimised schedule for any
kind of service or a combination of them. In (Hassold et al., 2014; Liu et al.,, 2016) we can
see some general-purpose solutions (at the research level), but they are still being tested
and demonstrated in particular domains. That is why we give a TRL value of between 3 and
7.

5.6 Physical interaction (robotics)

Many people have a paradigmatic view of intelligent systems as robots that physically
interact with the world. While a great part of Al applications are digital, it is those tasks that
require physical interaction with the world and with humans in particular that usually shape
people’s imagination concerning Al. When asking people about Al systems, navigation (e.g.,
going from one place to another safely) and manufacturing (e.g., performing tasks in
collaboration with workers) are important applications of many of these systems. We have
selected four very relevant and different technologies in this category: self-driving cars, home
cleaning robots, logistic robots, and inspections and maintenance robotics. Again, when
robotics is combined with Al we expect these physical systems not to be controlled by humans
(locally or remotely) but be given instructions (e.g., where to go and what to do) and follow
them autonomously. The following four categories provide good examples of Al technologies
that represent systems that interact physically.

5.6.1 Technology: Self-Driving Cars

Al is changing the very act of driving, and therefore transport as a whole. Driving automation
systems are already included in most modern cars to assist drivers and increase the safety
of every journey. But driving automation functions are progressively reaching new levels,
being capable of performing part or all of the driving tasks and potentially allowing drivers
to become mere passengers. The effort and investment by car manufacturers and major
technology companies to advance this technology is extraordinary, as are the efforts by
standardisation bodies, policymakers, and public authorities to find the best legal and social
fit for the adoption of this potentially disruptive technology. This is mainly driven by the many
potential benefits of the technology, such as increased safety, lower traffic congestion and
emissions, new mobility services, and potentially increased mobility for those unable to drive
by themselves.

This technology has a well-established and internationally accepted categorisation of levels
of automation. This is the taxonomy proposed by SAE International (formerly Society of
Automotive Engineers) in its recommendation “SAE J3016” published in 2014 and revised in
2018 and 2021.7 It establishes six levels of driving automation, from 0 (no automation) to
5 (full automation). The core of the automation is based on the driving automation systems

75 SAE International, “Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles”,
J3016 202104, 2021. Url: https://www.sae.org/standards/content/j3016_202104/
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which are the hardware and software able to perform some or all driving tasks on a sustained
basis. One important concept needed to understand the different levels is the Operational
Design Domain (ODD) which refers to the set of operating conditions (e.g., type of scenario,
speed range, traffic conditions, lighting and weather conditions, connectivity requirements,
pre-mapped zones, etc.) under which a given driving automation system is specifically
designed to function. The “SAE levels” (which we use here as levels of generality) can be
defined as follows:

— Level O - No Driving Automation: The performance by the driver of all driving tasks.

— Level 1 - Driver Assistance: The sustained and (limited) ODD-specific execution by a
driving automation system of the lateral or the longitudinal vehicle motion control tasks
(but not both simultaneously) with the expectation that the driver will perform the
remaining driving tasks.

— Level 2 - Partial Driving Automation: The sustained and (limited) ODD-specific
execution by a driving automation system of both the lateral and longitudinal vehicle
motion control tasks, with the expectation that the driver completes the remaining driving
tasks and supervises the driving automation system.

— Level 3 - Conditional Driving Automation: The sustained and (limited) ODD-specific
performance by a driving automation system of driving tasks with the expectation that
the driver is receptive to a requests to intervene in case of system failures, and will
respond appropriately.

— Level 4 - High Driving Automation: The sustained and (limited) ODD-specific
performance by a driving automation system of all driving tasks without any expectation
that a user will respond to a request to intervene. The driving automation system must
be capable of reaching a minimal risk condition in the event where the ODD limit is being
reached.

— Level 5 - Full Driving Automation: The sustained and unconditional (i.e., not ODD-
specific) performance by a driving automation system of all driving tasks without any
expectation that a user will respond to a request to intervene.
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Figure 13. Readiness-vs-generality chart for self-driving cars technology. TRL 9 has been clearly
reached by many cars on our roads in the levels between SAE levels 0 and 2 of driving automation.
For SAE levels 3 and 4, current developments of automobile companies are presently performing
research, prototyping and testing with self-driving cars (so TRLs are between 5 and 7). However, very
low TRLs are still estimated for fully self-driving cars requiring no human attention at all.

We can translate these levels of automation into more convenient and explicit driving modes
to better specify the user’s role and responsibility.”® This way, levels 1 and 2 will refer to
assisted driving, in which humans are fully responsible for all driving tasks. Level 3 can be
considered as automated driving, in which it is the human who ultimately assists the
system (assistant or backup driver). And finally, levels 4 and 5 can be referred to as
autonomous driving, in which the driver is a mere passenger with no responsibility in the
driving tasks. However, it is important to note that the levels of automation usually refer to
features, functions or systems (not the whole vehicle) and are always defined within a set of
specifications established in the ODD.”” This implies that we should be cautious when
interpreting the TRL assigned to each level of automation, as it will always depend on the
specific feature that has been automated and its operating design domain. So, for example,
we could have a level 4 automatic parking system for daytime conditions, which becomes
level 3 for night-time conditions. Or a level 4 traffic jam system for dense traffic, that can
only reach level 2 with moderately congested traffic. Or a level 4 automated lane keeping
system (ALKS) on highways with good lighting conditions, that becomes level 3 in night
conditions, and level 2 in adverse weather conditions (e.g., rain, fog, snow, etc.). Thus, we
should interpret the levels of automation as a simplification when referring to this
technology, which serves as an abstraction of a more complex and multidimensional problem.
This simplification makes it more convenient to assign ranges for the TRLs.

76 R. Schram, “Euro NCAP’s first step to assess automated driving systems”, Euro NCAP Working Group on Automated Driving,
Paper Number 19-0292, 2018.

77 British Standards Institution (BSI), “"Operational Design Domain (ODD) taxonomy for an automated driving system (ADS) -
Specification”, PAS 1883, 2020.
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Let’s go into more detail for the different levels.

Level O — No driving automation

Although modern cars have passive safety systems (e.g. ABS or ESC), when we have level 0,
the driver performs all driving tasks, and it is not too complicated to conclude that almost all
cars currently on the market meet this condition, so we can clearly assign a TRL 9.

Level 1 — Partial driving automation

The first and therefore most mature driver assistance system is Adaptive Cruise Control
(ACC). It was introduced in the early 1990s and is present in a wide range of commercial
vehicles today.”® ACC systems focus on maintaining a targeted speed (longitudinal motion)
selected by the driver or maintaining the distance between the vehicle in front and the ego
vehicle. Stop & Go functionality was introduced later, i.e., the ability to target a speed equal
to zero due to a stopped vehicle in front of the vehicle. ACC only provides driving support for
the longitudinal motion of the vehicle. The steering wheel must be controlled by the driver.

One example of assisted driving systems with lateral control can be found with the Park
Steering Assist system, in which the vehicle’s electronics control the steering wheel (lateral
motion) while the driver determines the speed using the pedals. These systems were first
introduced on the market in 2003, and were consolidated around 2010. Another example
is the Lane Keeping Assist,2® which is the evolution of the Lane Departure Warning (LDW)
system but conceived not only to warn the driver if the vehicle drifts out of the lane without
the turn signals on but to keep the vehicle in the centre of the lane by controlling the steering
wheel (lateral motion). Although the lane keeping assistant usually operates over a range of
speeds, the speed control is not part of the system itself. The above examples are commercial
systems, so they provide good evidence that this level of automation is clearly in TRL 9.

Level 2 — Partial driving automation

If we combine the Lane Keeping Assist with the ACC Stop & Go, we have the sustained
execution of both the lateral and longitudinal vehicle motion control tasks, which results in
the so-called Traffic Jam Assist (level 2). Although this technology was initially presented in
2013 for use at high speeds (e.g., the Daimler’s Distronic Plus with Steering Assist®!) the most
common operational design domain of most car manufacturers includes a maximum speed
beyond which the system stops operating (low-speed driving conditions).

Another level 2 system corresponds to the evolution of the Park Steering Assist into the so-
called Automatic Parking Assist, which is able to carry out the parking manoeuvre completely
with steering wheel and speed control. In the last decade we can find these automatic parking
assist systems available in several models of different vehicle manufacturers.® At this level
of automation, the Automatic Parking Assist requires total supervision and some degree of
control from the driver.

78 L. Xiao and F. Gao, “A comprehensive review of the development of adaptive cruise control systems,” Vehicle System
Dynamics, vol. 48, No. 10, pp. 1167-1192, 2010.

79 CNN International. “Toyota unveils car that parks itself”, 2003. URL:
http://edition.cnn.com/2003/TECH/ptech/09/01/toyota.prius.reut/index.html
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Finally, we have one of the systems that is best known to the general public, the Tesla’s
Autopilot system.®* It was first launched in 2014, but since then numerous upgrades and
updates have been made.®® As recently established in the NHSTA's investigation®® to evaluate
the performance and operating conditions of the Autopilot system following a series of
crashes between Tesla models and emergency vehicles, “Autopilot is an (SAE Level 2)
Advanced Driver Assistance System (ADAS) in which the vehicle maintains its speed and lane
centring when engaged within its Operational Design Domain (ODD). With the ADAS active,
the driver still holds primary responsibility for Object and Event Detection and Response
(OEDR), e.g., identification of obstacles in the roadway or adverse manoeuvrers by
neighbouring vehicles during the driving tasks”. It is known that a considerable number of
users misuse this technology due to over-reliance, with fatal consequences.®’

All these examples are well established commercial systems (despite misuse by some users),
so it is reasonable to say that level 2 driving automation systems have reached TRL 9.

Level 3 — Conditional driving automation

The next level of the Traffic Jam Assist is the Traffic Jam Chauffeur,2 which for low-speed
driving conditions (traffic jams) involves sustained performance of the driving tasks with the
expectation that the driver is receptive to a request to intervene in case of system failures.
Audi presented the first commercial system in 2017 (Traffic Jam Pilot®®) with a maximum
speed of 60 km/h. However, they encountered serious problems in commercialising it, as
there was (and still is) no clear legal framework to deal with the market entry of level 3
driving automation features.®® However, this situation is changing. In March 2020 the United
Nations Economic Commission for Europe (UNECE) by means of its UNECE World Forum for
Harmonization of Vehicle Regulations (WP.29) adopted an international regulation to
establish uniform provisions concerning the approval of vehicles with regard to Automated
Lane Keeping Systems (ALKS).°! In a first step, the regulation limited the operational speed
to 60 km/h maximum, so it can be considered equivalent to Traffic Jam Pilot technology.
Many countries are also adapting their national legislation to allow the commercialisation of
these systems. Recently, in November 2020, Honda received type designation for its level 3
Traffic Jam Pilot technology in Japan.®? There are other car manufacturers focused on
developing this technology, but they have not yet incorporated it into commercial models.
Although with limited scale, we can conclude that Traffic Jam Chauffeur's technology has
reached TRL 9.

The next step in level 3 automation is the extension of the maximum speed range of the
system (beyond traffic jams), including additional functionalities such as lane changing or
overtaking. These features are included in the so-called Highway Chauffeur or Highway Pilot
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systems.®® These systems have not been commercialised yet, but some prototypes have been
mostly validated in relevant environments and, in some cases, even demonstrated in
operational environments (e.g., trucks highway pilot®). Therefore, we can assign TRLS
between 5 and 7 for this level 3 automation technology.

Finally, one of the most promising applications of autonomous cars at scale are the so-called
“robotaxis”, also known as self-driving taxis, which are devised to provide a mobility service
in urban environments. There are several pilot tests underway in several cities around the
world, some of which are in commercial use and open to the public (e.g., Uber and Waymo).
But in almost all cases, this technology is implemented at level 3 with a backup driver.

Taking into account the state of the aforementioned conditional driving automation systems,
we can generalise and conclude that the technology has reached an average TRL 7, with
margins from TRL 5 to TRL 9.

Level 4 — High driving automation

As mentioned above, at this level it should be noted that, within the ODD, no driver is required.
Although there are legal exemptions for testing level 4 systems in many countries, so far
only Germany has recently adopted a regulatory framework to allow their commercial use.®
Even so, it will not be until 2022 that the first permits will be issued. Therefore, we can state
that there are no commercial level 4 systems worldwide, as there are no legal frameworks
to support them. Depending on the driving feature, the technology has been validated in the
lab (TRL 4) and even demonstrated in relevant and operational environments (TRL 7). We can
state that most of the systems have been validated in relevant environments (TRL 5).

For example, as an extension of the Highway Chauffeur/Pilot we have the Highway
Autopilot,®® which does not require the user to intervene in the driving dynamic tasks as the
system is capable of reaching a minimum risk condition in the event of a critical failure. This
system has been demonstrated on trucks in operational environments.*’*® One concept that
fits perfectly within the term “driverless cars”, and which incorporates technology both in the
vehicle and in the infrastructure, is Automatic Valet Parking.®® This highly automated driving
function was conceived to allow automatic navigation and parking within a car park without
the need for driver support. It was validated in relevant environments more than a decade
ago,'® but it was not until 2017 that the technology was demonstrated in operational
environments 1%

Another type of system that not only lacks a driver, but also a steering wheel and pedals, are
urban shuttles for the transport of both people and goods. This type of technology has
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reached TRL 7 as it has been demonstrated in different operational environments. Some
examples are the e-Pallete vehicles from Toyota,'? that have been recently used to support
athlete mobility at the Olympic and Paralympic Games Tokyo 2020,% or the R2 autonomous
delivery vehicles developed by Nuro!®* to deliver pizza in Houston in collaboration with
Dominos.1% Recently, in July 2021, the first international ISO safety standard for these types
of level 4 vehicles (low speed and predefined routes), has been published.'%®

Finally, it is important to note that since the end of 2020, Waymo has put into service, for
the first time worldwide, driverless taxis (i.e., level 4 “robotaxis” with no backup driver) in the
suburbs of Phoenix.1” Although with a limited number of vehicles, and in a very structured
operating environment, this experience is one of the greatest achievements in autonomous
driving so far.

Considering all the aforementioned examples, we can generalise and conclude that high
driving automation systems (level 4) have reached TRLs between 4 and 7, the most common
one being TRL 5.

Level 5 — Full driving automation

This level of automation is somewhat problematic in its definition. Although the SAE
International recommendations attempt to clarify the meaning of an unconditional/unlimited
ODD by relating it to the performance of a typical skilled driver, the truth is that, from a
technical and legal point of view, it is quite difficult to accept the idea of an unlimited ODD.
Ultimately, the difference between level 4 and level 5 has to do with the size of the ODD,
which makes level 5 somewhat ill-defined, and does not allow us to make solid estimates of
the current TRL of this technology. We can consider that the idea of an unlimited ODD (level
5) refers to the range of operating conditions of a typical driver, which may include different
lighting conditions (daytime and night-time), moderate adverse weather conditions, complex
road layouts, different traffic conditions, etc.

The concept of an autonomous driving system capable of operating in an ODD similar to that
of a typical expert driver has been formulated'®® (TRL 2) and experimental proof of concepts
have been developed'® (TRL 3). Moreover, considering the increasing importance that
autonomous driving simulators,'*® and even the so-called shadow mode,*!* are playing in the
development and testing of automated driving technology, in which millions of different
scenarios with a very large ODD can be tested in a reasonable period of time, we can consider
that this level of automation is currently being validated in the lab (TRL 4).
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