
 

 

T E C H N I C A L  R E P O R T  

 
AI Watch: AI uptake in Manufacturing 

EUR 31121 EN 



 

This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It 
aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a 
policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is 
responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used 
in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The 
designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part 
of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation 
of its frontiers or boundaries. 
 
Contact information: 
Name:  Daniel Nepelski 
Address: JRC Seville - Edificio Expo, C. Inca Garcilaso, 3, 41092 Sevilla, Spain 
Email: daniel.nepelski@ec-europa.eu 
Tel.: +34 9544-80573 
 
EU Science Hub 
https://ec.europa.eu/jrc 
 
 
JRC129295 
 
EUR 31121 EN 
 
 

PDF ISBN 978-92-76-53491-4 ISSN 1831-9424 doi:10.2760/267198 

 
 
Luxembourg: Publications Office of the European Union, 2022  
 
© European Union, 2022  
 
 
 
 
 
 
The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the 
reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under 
the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that 
reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of photos or other 
material that is not owned by the EU, permission must be sought directly from the copyright holders.  
 
All content © European Union, 2022, except: Pg. 17, smashingstocks, Figure 2, Pg. 17, berkahicon, Figure 2, Pg. 17 Freepik, Figure 2. 
 
How to cite this report: Sarah de Nigris, Richard Haarburger, Jiri Hradec, Massimo Craglia, Daniel Nepelski , AI Watch : AI uptake in 
Manufacturing, EUR 31121 EN, Publications Office of the European Union, Luxembourg, 2022, ISBN 978-92-76-53491-4, 
doi:10.2760/267198, JRC129295. 
 
 

https://creativecommons.org/licenses/by/4.0/


i 

Contents 

Foreword ..................................................................................................................................................................................................................................................................... 1 

Acknowledgements .......................................................................................................................................................................................................................................... 2 

Abstract ....................................................................................................................................................................................................................................................................... 3 

Executive Summary ......................................................................................................................................................................................................................................... 4 

1 Introduction..................................................................................................................................................................................................................................................... 6 

2 AI in Manufacturing: a mindmap ................................................................................................................................................................................................ 7 

 Enablers of AI in Manufacturing ................................................................................................................................................................................... 7 

 Applications of AI in Manufacturing ....................................................................................................................................................................... 10 

 AI and Manufacturing for the Green Deal ........................................................................................................................................................ 12 

3 Expert consultation on the adoption and use of AI technologies and applications in the manufacturing 
sector .......................................................................................................................................................................................................................................................................... 15 

 The adoption of AI in manufacturing .................................................................................................................................................................... 15 

 Barriers and challenges to adoption ...................................................................................................................................................................... 15 

4 Investigating the uptake of AI technologies in the manufacturing sector worldwide and in the EU .................... 17 

 Scientific research: Scientific publications and H2020 projects ................................................................................................. 17 

 Technological innovation: Patents ............................................................................................................................................................................ 21 

 Start-up Ecosystem: Venture Capital Investments in AI and manufacturing ................................................................. 27 

 Sustainability in AI and manufacturing: the data perspective ...................................................................................................... 32 

5 Conclusions .................................................................................................................................................................................................................................................. 33 

Bibliography .......................................................................................................................................................................................................................................................... 36 

List of abbreviations .................................................................................................................................................................................................................................... 40 

List of boxes......................................................................................................................................................................................................................................................... 41 

List of figures ..................................................................................................................................................................................................................................................... 42 

List of tables ........................................................................................................................................................................................................................................................ 43 



1 

Foreword 
This report is published in the context of AI Watch, the European Commission knowledge service to 
monitor the development, uptake and impact of Artificial Intelligence (AI) for Europe, launched in 
December 2018. AI Watch monitors European Union’s industrial, technological and research capacity 
in AI; AI-related policy initiatives in the Member States; uptake and technical developments of AI; and 
AI impact. AI Watch has a European focus within the global landscape. In the context of AI Watch, the 
Commission works in coordination with Member States. AI Watch results and analyses are published 
on the AI Watch Portal.  

From AI Watch in-depth analyses we will be able to better understand European Union’s areas of 
strength and areas where investment is needed. AI Watch will provide an independent assessment of 
the impacts and benefits of AI on growth, jobs, education, and society. AI Watch is developed by the 
Joint Research Centre (JRC) of the European Commission in collaboration with the Directorate General 
for Communications Networks, Content and Technology (DG CONNECT). 

 

https://ec.europa.eu/knowledge4policy/ai-watch_en
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Abstract 

This AI Watch report analyses AI uptake in manufacturing. It recognizes that AI can empower a variety 
of applications in the manufacturing sector and it can impact all stages of production; in particular a 
major role for AI lies in blending data from different processes, factory floors or production sites to 
enable holistic optimizations. However, there is a strong need to access data and, furthermore, the 
need for quality data. Furthermore, standardization of data formats and of communication protocols 
will be a fundamental enabler for data sharing. Involving human resources in the AI uptake process 
is also an essential need in manufacturing, both at the workforce and management level. 

The current report shows that AI uptake in manufacturing has accelerated over the last decade, but 
it is still at its early stage: for instance, In the last five years, the annual VC investment in AI and 
manufacturing has accounted for up to 15% of the total VC investment in the sector. At EU27 level, 
we observe that Germany, France, Italy and Spain lead in all the rankings of AI uptake in 
manufacturing, indicating significant disparities with respect to the level of AI uptake in 
manufacturing across the EU Member States.  
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Executive Summary 
This report presents an analysis of the uptake of Artificial Intelligence (AI) in the manufacturing sector, 
carried out by AI Watch. Overall, the current report shows that AI uptake in manufacturing has 
accelerated over the last decade, bringing a large set of opportunities, but it is still at its early stage, 
hurdled by several challenges. We summarize both, opportunities and challenges, as well as the 
quantitative results of our analysis here below. 

Benefits and challenges of AI Uptake 

Benefits AI can empower a variety of applications in the manufacturing sector and it can 
impact all stages of production: indeed, beyond local deployement in individual processes, a major 
role for AI lies in blending data from different processes, factory floors or production sites to enable 
holistic optimizations. For instance, at the organization level, AI can forecast future demands, enabling 
a more accurate and efficient scheduling of production. At the machine level, AI can anticipate the 
need for maintenance, reducing downtimes and production disruptions. At the level of inputs and 
outputs, quality control can be AI-powered too, for instance, by ensuring the quality of the final 
product or of the raw material to be processed. 

The strive for optimizing processes, reducing waste in a general sense, be it energy or resources, has 
a natural beneficial impact on the sustainabilty of manufacturing processes. However, the 
transition to “greener” practices cannot emerge solely as a byproduct of the deployement of AI and 
digital technologies in general. On the contrary, sustainability concerns must be there from the start 
of the digital transformation, since a local optimization entailed by AI may not necessarily result in 
an overall reduction of environmental impact, which in turn requires an holistic approach. 

Challenges A central and recurring challenge to AI uptake is the need to access data and, 
furthermore, the need for quality data. Furthermore, as one the strengths of AI lies in performing 
holistic optimizations across processes and machines, the standardization of data formats and 
of communication protocols will be a fundamental enabler for this data sharing. Involving human 
resources in the AI uptake process is also an essential need in manufacturing, both at the 
workforce and management level. In particular, upskilling and training of human resources should be 
planned both to ensure an AI deployement apt to meet workers’ needs, in terms of workflow 
management, and to ensure best results by leveraging tacit domain knowledge held by workers. 

 

AI in manufacturing: scientific research, innovation and start-up activity 

Scientific research In terms of scientific publications, our analysis shows a steep increase in AI 
and manufacturing since 2014, from around 5% to peak in 2019 at around 25% of the year’s 
publications. The EU27 holds a position of leadership in terms of scientific output, with approximately 
20% of manufacturing publications delving into the application of AI. China and the US follow with 
approximatively 1000 publications each in AI and manufacturing, accounting approximately for 15% 
and 20% of their scientific output in manufacturing. At the EU Member State level Germany, France, 
Spain and Italy stand out in terms of scientific output and participation in EU-funded R&D projects. 
Furthermore, these countries share strong ties in scientific collaboration, both with shared 
publications and joint H2020 projects.  

Innovation In terms of technological innovation, we analysed patent data which are a key 
instrument for the protection of the innovation carried by new products and processes. China holds 
the majority of patents in absolute numbers but, when we restrict our analysis to the most cited 
patents, which is a measure of influence, US holds the largest share, followed by EU27. Furthermore, 
our analysis of patent citations reveals relatively strong bilateral knowledge transfers between the 
US and EU27; on the other hand, Chinese patents seem to mostly cite other Chinese patents. Within 
the EU27, Germany holds the largest number of EU patents in AI and manufacturing, followed by the 
Netherlands and France, with the top assignees being mostly large firms, such as Siemens, a German 
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manufacturer delving into healthcare, energy and industrial devices, and Bosch, a German engineering 
company. 

Start-up activity AI and manufacturing VC investments account for only 12% of global VC 
investment in the manufacturing sector, indicating an uptake still relatively low. EU27 receives less 
than 10% of the worldwide investments in AI and manufacturing; on the other hand, US companies 
receive the largest share with 59%, followed by Chinese ones with 15%. Within the EU, Germany 
receives most of AI and manufacturing VC funding, with over 45% of the total VC investments and 
Luxembourg comes second with a share of approximately 10% of the total.  

In synthesis, comparing the EU27 with the main global economies using the technological life-cycle 
framework, we observed that it has a strong position at the initial stages of AI and manufacturing 
development and research, and that it becomes less prominent in the later stages of the technology 
lifecycle (innovation and market applications). For example, the EU scientific output is twice that of 
US or China. However, when looking at the number of patents (as proxy for innovation activity) or VC 
funding received by start-ups (as a proxy for market application), the EU starts to fall behind the US 
and China. 
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1 Introduction 
In recent years, Artificial Intelligence (AI) has proven progressively more transformative across the 
economy and, as with many of those other sectors, Manufacturing can potentially reap large benefits 
from the uptake of AI to enable more efficient and sustainable production. 

The policy context set by the European Commission (EC) sustains this rising trend, aiming to boost 
the development and uptake of AI technologies for manufacturing while remaining, however, 
conscious of the pressing environmental needs. Indeed, among the six political priorities of the EC for 
the period 2019-241, two are particularly relevant to future developments in the Manufacturing 
sector: the European Green Deal2, which aims at achieving zero net emission of greenhouse gases by 
2050, and a Europe fit for the Digital Age3, which aims at leveraging the digital transformation to 
increase the EU technological and data sovereignty. 

Industry plays a key role in achieving these objectives, and the Industrial Strategy4 adopted in 2020 
aims at strengthening the competitiveness of European industry using the Green Deal, not only as an 
objective but also as an opportunity to innovate and create new clean technology markets. At the 
same time, the digital transition is a key aspect of the innovation necessary to achieve the 
environmental and social objectives of the Green Deal.  

The industrial strategy, updated in May 20215, features several initiatives for data sharing, testing 
and supporting the digital transition geared specifically towards manufacturing: 

• Establishing a dedicated industrial manufacturing data space as part of the European 
Strategy for Data. In such data space, key industrial players would share data, under 
conditions to be agreed, to support the development of AI-based applications and products.  

• Supporting the development and deployment of photonics technologies in various fields, 
including manufacturing,  

• Supporting a public-private partnership on Factories 4.0, ‘Factories of the Future’, which is 
public-private partnership (PPP) for advanced manufacturing research and innovation under 
Horizon 2020.  

• Establishing a public-private partnership “Made in Europe” for sustainable manufacturing in 
Europe, including through AI, contributing to a competitive and resilient manufacturing 
industry in Europe and reinforcing added value in supply chains across sectors  

• Co-funding a Testing and Experimentation Facility for AI in Manufacturing under the Digital 
Europe Programme, with a first call in 2021-22,  

• Extending the network of European Digital Innovation Hubs6, to support the transfer of 
know-how between research and industry and in particular SMEs.  

Against this backdrop, this report aims to provide an overview of the current uptake of AI 
technologies in the manufacturing sector. We adopted a comprehensive approach to analyse the 
uptake of AI, starting from a more qualitative standpoint with desk research and expert 
consultations, complemented by using several data sources for a quantitative assessment. For 
the latter, we followed the technological-innovation lifecycle, starting from an extensive analysis 
of scientific publications and EU-funded R&D project data, followed by the analysis of Venture 
Capital investments and innovation activities through patent applications data related to AI and 
manufacturing, in order to convey the several different facets composing AI uptake. 

                                           
1 https://ec.europa.eu/info/strategy/priorities-2019-2024_en  
2 https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF  
3 https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age_en  
4 https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1593086905382&uri=CELEX:52020DC0102  
5 https://ec.europa.eu/growth/industry/policy_en  
6 https://digital-strategy.ec.europa.eu/en/activities/edihs  

https://ec.europa.eu/info/strategy/priorities-2019-2024_en
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1593086905382&uri=CELEX:52020DC0102
https://ec.europa.eu/growth/industry/policy_en
https://digital-strategy.ec.europa.eu/en/activities/edihs
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2 AI in Manufacturing: a mindmap 
Our literature review and expert consultations allowed us to gain insight into the deployement of AI 
in manufacturing. The information we gathered can be organized in two broad categories (Figure 1): 
enablers, on the top of which AI can be deployed, and applications, which constitute broad classes 
of situations in manufacturing where AI is deployed, aiming to generate improvements or outright 
disruption. 

Figure 1. Mindmap of AI in Manufacturing 

 
Source: JRC 

Enablers of AI in Manufacturing 

As highlighted in the existing literature on AI in Manufacturing, technological enablers comprise all 
building blocks making up the technological groundwork necessary to make AI applicable in 
manufacturing, providing the foundations for its deployement.  

The following section provides an overview of the main or most commmon technological enablers 
required to adopt AI in the manufacturing sectors, divided into two main categories: data and 
infrastructure. 
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Data 

Conceptually, we differentiate between three different types of data which constitute the inputs to 
applications of AI in manufacturing. These are  

• telemetry data,  

• customer data  

• domain knowledge  

Telemetry data 

The term telemetry data comprises all types of data collected for the purpose of surveillance and 
optimisation on machines under operation involved in manufacturing processes. The collection of 
telemetry data usually involves a sensor, which measures a specific metric, e.g., the temperature of 
a component. The measurement is transmitted to a recording or visualisation device, evaluated in 
real time and/or stored for later evaluation (Carden, Jedlicka, & Henry, 2002). 

Customer data 

In the context of AI in manufacturing, customer data is used for two main purposes. Most importantly, 
it is used to individualise products based on customers’ preferences, physical measurements or design 
customisation input. In other words, artificial intelligence is used to map the customer’s input to the 
final product. For example, the combination of a customer’s recorded preferences regarding the fit of 
a piece of clothing and physical measurements can be transformed by AI into an individualised cut 
(Li, Yuan, Kamarthi, Moghaddam, & Jin, 2021). 

Second, customer data are used in business analytics along other statistical methods as a general 
tool for optimisation. More specifically, one application of AI is to forecast demand and consequently 
optimise the degree of capacity utilisation of machinery to prevent under- as well as overproduction 
(Seyedan & Mafakheri, 2020) (Kilimci, et al., 2019). 

Domain knowledge data 

Domain knowledge data refers to knowledge held by experts about specific production processes or 
the operation of specific machinery. Thus, they serve to tailor AI applications to use-cases and are 
incremental in moving from general AI solutions stemming from basic research to highly specialised 
applications. Integrating domain knowledge data can tremendously improve the performance of AI 
applications. Moreover, for many applications, domain knowledge is necessary to evaluate the 
performance of the AI methods applied. For example, without domain knowledge, data and computer 
scientists might not be able to optimise algorithms properly, due to an incomplete or wrong idea of 
optimal conditions (Li, Yuan, Kamarthi, Moghaddam, & Jin, 2021). 

 

Infrastructure 

 

In addition to data, in order to integrate AI into the manufacturing of products, the gap between 
machinery and ready-to-use data has to be bridged by adequate infrastructure. Besides data-
generating infrastructure such as sensors and smart meters, other infrastructure is necessary to 
establish the interconnectivity of physical components, which is required for various technologies 
commonly included under the umbrella term internet of things (IoT). The way to integrate such 
physical components into these networks is to create digital twins, which enables a seamless 
digitisation and prevents incompatibility issues. Moreover, as training of AI models and augmenting 
data tends to be computing-power intensive, the deployment of AI calls for appropriate infrastructure 
able to cope with such computation tasks. This infrastructure usually relies on computing clusters, i.e., 
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either on in-house solutions or external cloud computing services, and high-performance 
computing, which are requested on demand. 

Sensors 

Sensors represent the first element in the signal transmission chain necessary to bridge the gap 
between machinery and data evaluation, which makes them essential in recording digital data of 
machines in operation. For the numerous different metrics to be recorded, a wide range of specialized 
sensors exist. However, sensors always work in interaction with other electronic components (Sabu, 
Nguyen, Ahmadi, Farmani, & Yasin, 2021). 

 

IoT 

The term internet of things refers to the interconnectedness of physical objects. Once integrated into 
a network, the objects can exchange information and can be integrated into automated higher-level 
processes, which involve any number of objects part of the network. AI can be used for processing 
and interpreting data generated this way. For example, for optimising higher-level processes, for 
aiding communication amongst objects, and many other applications (Song, Jeschke, & Rawat, 2017).  

 

Industrial digital twins 

Industrial digital twins provide the means to integrate otherwise analogue physical objects into digital 
networks. The term does not describe an exact digital copy of an object, but rather a digitized form, 
which summarizes information about the physical object being relevant for its functionality in the 
network. The digital twin might for example contain physical measurements of the analogue object, 
like weight or volume measurements, which can be used as input by other objects in the network  
(Pal, et al., 2021) 

 

Cloud and High performance computing 

The term cloud computing refers to the provision of computing and data storage services mostly on 
demand. The cloud infrastructure and maintenance are thus usually provided by the cloud computing 
provider and not actively managed by the user. Cloud computing services have emerged mainly due 
to increasing data availability and size, but also due to the increased use of computationally intensive 
statistical methods, of which some categorize as AI. (Furht & Escalante, 2010). High performance 
computing refers to computing clusters with extremely high computational power that are able to 
solve complex and demanding problems, such as fluidodynamics simulations. 

 

Artificial intelligence 

In alignment with the research carried out in the context of the AI Watch project (Samoili, 2020), we 
adopt as operational definition of AI the one proposed by the HLEG on AI:  

HLEG definition of AI 

"Artificial intelligence (AI) systems are software (and possibly also hardware) systems designed by 
humans7 that, given a complex goal, act in the physical or digital dimension by perceiving their 
environment through data acquisition, interpreting the collected structured or unstructured data, 
reasoning on the knowledge, or processing the information, derived from this data and deciding the 
best action(s) to take to achieve the given goal. AI systems can either use symbolic rules or learn a 

                                           
7 ec.europa.eu/newsroom/dae/document.cfm?doc_id=584 
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numeric model, and they can also adapt their behaviour by analysing how the environment is affected 
by their previous actions. 

Applications of AI in Manufacturing 

The literature also highlights a broad variety of use cases or applications for AI in Manufacturing. 
Building on the enablers, this section shows that AI can empower a variety of applications in the 
manufacturing sector. The following applications do not, however, exaust the space of possibilities 
because, as was also stressed by several experts during our consultations, AI can impact all stages 
of production: indeed, beyond local deployement in individual processes, a major role for AI lies in 
blending data from different processes, factory floors or production sites to enable holistic 
optimizations. 

 

Organization 

Organisation concerns primarily the internal relationships within the factory and the 
company such as responsibilities of personnel, arrangement of machines and planning the schedules 
for each component, the physical assets and the human reseources, to meet the demand. In this 
context, we outline here three main applications of AI at the organisation level: demand forecast 
and planning, automated warehouse management and automated design and 
customization. 

 

Demand forecast and planning: Demand forecasting allows to optimise the degree of capacity 
utilisation in manufacturing and thus is conducted to maximize profits by matching supply with 
demand. Various statistical and econometric methods are available to forecast demand, of which 
some classify as AI (Seyedan & Mafakheri, 2020). Because of the agility in a commoditizing market 
which is transitioning from mass production to mass customization, it is very important to apply 
AI in a combined cycle between processes, market demand and market pricing.  

Indeed, to maximize profit, companies aim to match output to the demand, since both over-producing 
and under-producing imply profit losses. In the case of over-producing, companies have to deal with 
extra costs generated by surplus products, which could involve costs due to disposal, returns from 
retailers or reductions in prices to prevent the former. When under-producing, firms miss out on 
potential profits.  

 

Automated warehouse management: Automated warehouse management refers to replacing 
repetitive tasks that commonly take place in warehouses with automated systems. In general, one 
can differentiate between digital automation and physical automation. The former involves mostly 
software solutions, digital databases and the creation of networks (IoT). Physical automation refers 
to the use of robotics, scanning devices, sorting equipment, etc. Thus, AI can be applied to various 
tasks to facilitate automation of warehouses in both domains. In the context of digital automation 
this can be done by optimisation of networks, databases, and maximizing efficiency; in physical 
automation, by assisting in robot navigation, image recognition (e.g., of barcodes), operation of smart 
shelves, among others (Hamberg & Verriet, 2012). 

 

Automated design and customisation: Automated design and customisation is the process of 
automating the incorporation of the customers’ specifics in a product design. For instance, some 
companies offer manufacturing on-demand, with customers making choices about the appearance 
of products, materials used or physical measurements. In this context, AI algorithms can be used to 
implement all of these forms of customisation. The same way that AI can be used to transfer styles 
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of one image to another, for example, applying the style of Vincent van Gogh’s ‘starry night’ to another 
image, it can be used to transfer the ‘look’ of a customer’s input image to the design of a product. 
Besides aesthetics, physical measurements of products manufactured on-demand are also 
customizable (Butler & Bright, 2018) (Pathak, Pal, Shrivastava, & Ora, 2019).  

 

Processes 

A manufacturing process is the transformation of raw material into the finished product by 
manufacturing methods, operations scheduling, software, machinery and human operators. In this 
domain AI can contribute by improving efficiency in several ways, for instance by improving 
scheduling optimisation, the energy and resource usage and by supporting human operators in 
the operator 4.0 context. 

Scheduling optimisation Scheduling optimisation is the process of arranging, controlling and 
work and workloads of machines and human resources to generate a certain output level while 
entailing minimal costs and time needed. The term stochastic scheduling is used when random effects 
are integrated into the optimisation exercise, such as random machine failures or delays. As stochastic 
and non-stochastic scheduling problems are solved with specialised algorithms, AI is one possible 
method to solve these optimisation problems (Lee, 2020). 

 

Energy and resource efficiency refers to methods to reduce energy consumption and resource 
usage in manufacturing processes. For instance, AI in waste management can reduce resource 
consumption through the use of smart tags to track products and raw materials. Against the backdrop 
of climate change, efficiency in managing energy and resources is increasingly gaining attention and 
importance for companies. Stricter regulations, often accompanied by higher energy costs, are 
increasing the pressure to produce as energy-efficiently as possible. Increasing energy-efficiency 
often resembles other classic optimisation problems, which can be solved with AI (Lee, 2020). 

 

Operator 4.0 The term operator 4.0 refers to technology-augmented machine operators or other 
industrial workers. The possibilities of augmenting humans are manifold, however, developments in 
this area are at an early stage. Areas of application include increased physical ability, augmented or 
virtual reality, biomarker or health surveillance and collaborative robots (co-bots). Most of these 
applications have the objective in common to make operators more able, efficient and precise. The 
exception is health surveillance, whose objective is to protect operators in hazardous work 
environments (Peruzzini, Grandi, & Pellicciari, 2020).  

 

Physical Assets 

 

In a manufacturing firm, physical assets encompass the equipment and machine tools as well as 
other equipment such computers and hardware components. AI can be deployed at the level of 
physical assets to monitor and ensure the correct functioning of such equipment in order to reduce 
or eliminate costly downtimes.  

 

Quality inspection and control One of the essential elements of manufacturing is quality 
inspection, which refers to the continous monitoring of the product characteristics to ensure it meets 
quality standards requirements. In many cases, quality inspection resembles at core a pattern 
recognition-based labelling problem. Since pattern recognition problems are an application where AI 
does particularly well, quality inspection is an element of manufacturing in which AI is heavily used. 
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An example would be the use of image recognition algorithms to spot and weed out faulty products. 
The principle at work in quality control usually is to collect a range of data points about a 
manufactured product and then to infer an individual label from these data points, such as “meets 
quality standards”. Many algorithms can be employed for this inference, but the advances in cost and 
availability of computing resources have favoured AI classification algorithms, such as convolutional 
neural networks (Escobar & Morales-Menendez, 2018). 

 

Predictive maintenance Predictive maintenance refers to the permanent surveillance of 
machines using statistical methods, which predict whenever maintenance should be conducted. 
Defect-induced downtimes of machinery are associated with huge costs for manufacturers. In order 
to prevent such downtimes, manufacturers conventionally run maintenance schedules of machines. 
However, regular maintenance can cause inefficiencies. First, since maintenance usually entails 
additional costs in the form of labour costs, production stops, etc., it is inefficient to conduct 
maintenance when it is not strictly needed, i.e., without diagnostic findings or reparations. Second, by 
means of a discrete, regular schedule, anomalies may develop just after maintenance and lead to 
defect-induced downtime before they are discovered in the following maintenance. Thus, ideally, 
manufacturers permanently monitor the condition of machinery without interfering with 
manufacturing processes. For this purpose, sensors are installed at crucial parts of the machine which 
deliver real time data on the condition of the machine such as temperature, pressure, etc. AI is used 
to improve the performance of these predictive methods due to its pattern recognition capabilities 
(Zonta, et al., 2020).  

 

Overall equipment effectiveness The term overall equipment effectiveness (OEE) refers to a 
measure for productivity for the physical assets used in the manufacturing process. It has three 
components: quality, performance and availability and, therefore, OEE encompasses both quality 
control and predictive manteinance mentioned above. Quality is typically defined as the ratio of good 
parts to total parts produced. Performance refers to the speed of production and is a measure for 
how close the production runs to maximum speed. Availability refers to the ratio of uptime to total 
time, i.e., the degree of utilization. AI can be used to improve all three of these measurements: quality 
can be improved by AI-based pattern recognition, performance can be improved by optimising 
schedules and availability can be improved via predictive maintenance (Hansen, 2001). 

 

AI and Manufacturing for the Green Deal 

As AI can improve the efficiency of production, reducing resource and energy consumption and waste, 
it can be an enabler for sustainable manufacturing processes. This strong link emerged both from the 
literature review and expert consultations as well as from the quantitative analysis of several data 
sources as shown below. The impetus towards sustainability can indeed be enhanced by AI: in 
(Vinuesa, 2020), the authors identified 128 out of 169 targets of the 2030 Agenda for Sustainable 
Development for which AI could act as an enabler. Twenty five of them correspond to climate 
mitigation and environment protection.  

A key feature of AI is its capacitiy of improving effectiveness through optimization and, for 
manufacturing, it can reduce the environmental impacts of the sector by reducing wastes of time, 
energy and materials: indeed, for instance, computer vision algorithms can avoid unnecessary waste 
of both raw materials and finished products by improving quality inspection and forecasting enabled 
by machine learning can help reduce over-production, anticipating demand and matching it more 
closely with production schedules (see Box 1). Furthermore, the use of digital twins fed with the 
collected data, can be used for simulations of processes thus allowing an enhanced control over the 
process management prior to its deployement, reducing the waste of energy and resources due to 
inefficiencies.  
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It is however important to note that, as was stressed by several of the experts who participated in 
our consultations,  to support sustainability objectives a holistic optimization is required, taking into 
account all the steps of the production chain, while local optimizations do not necessarily have a net 
positive impact when considering counter-balancing effects such as increasing demand leading to an 
increase in production. 
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Box 1: AI monitoring performance and improving operating efficiency of industrial 
machines by Elmodis 

From our analysis of AI and manufacturing start-ups, several ones emerged whose activity is geared 
towards sustainability. As an example, Elmodis is a Polish Industrial Internet of Things (IIoT) 
Technology company developing solutions based on AI. 

Founded in 2015, this provides solutions improving the energy and operating efficiency of electric-
powered industrial machines by combining hardware, with IoT, and algorithms that enable 
manufacturers and end-users to remotely monitor the performance of the machines in real-time. 

Their solution for machine monitoring is based on measuring current and voltage from electric motors 
powering those machines, combining with process parameters to provide a complete picture. Then, 
from the measurements of electric energy that flows through the machine, it is possible to calculate 
several parameters in real-time which give the performance and state of the machines. Using such 
data flow enables machine manufacturers to reduce warranty repair costs, improve the products’ 
quality with, at the same time, an optimization of their energy consumption and preventions of 
failures from incorrect usage. 

The deployment of its AI-enabled solutions in the manufacturing context helped to avoid over 2,000 
hours of down time and reduced the level of CO2 emissions by nearly 3 million kilograms since 2015. 

The development of this technology was supported by European funding, through the European Fund 
for Strategic Investments (EFSI), in the frame of a project focusing on preparing and implementing 
new computational and measurement-based methods for modelling machine and process simulation. 
These simulations can help predicting the technical condition in order to increase availability of critical 
equipment and, furthermore, help improving efficiency of energy generation with the use of advanced 
Distributed Edge Computing technology and the Hybrid Cloud. 
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3 Expert consultation on the adoption and use of AI technologies and 
applications in the manufacturing sector 

 

The adoption of AI in manufacturing 

During our expert consultations, the emergent topics on adoption of AI in the manufacturing sector 
were focused along three main axes: a technical one, one related to human resources, and one 
related to environmental concerns and sustainability. 

From the technical standpoint, a recurring topic for AI uptake was the importance of standards, 
as they are key to enable communication between machines, processes and stakeholders in the value 
chain. Standards can also provide an essential starting point for data sharing and they are seen as 
crucial to enable applications such as industrial digital twins. 

On the link between AI and human resources, AI is seen as a means to augment human 
capabilities (Sahu, 2021): for instance, many tasks in manufacturing, though dangerous and 
cumbersome, still require a lot of expertise; in this context, AI-powered collaborative robots could take 
them over, so that the expert operator can focus on tasks with more value added. Furthermore, AI 
can also assist in the decisional process, by augmenting the operator’s assessment capacities with 
more information.  

Human-in-the-loop is regarded as fundamental (Bousdekis, 2021):  AI-powered optimization 
concerns the optimization of the human-machine interaction itself, not just the customization of the 
workflow over the operators or the optimization of the machine. Thus, to be effective the optimization 
must encompass the mutual cooperation across the manufacturing process. To this end, trials are 
already being carried out innovation laboratories on  the mutual interaction between algorithms, 
intelligent machines and workers. 

Human-machine collaboration also allows for breaking silos (Jarrahi, 2022): many companies face 
the challenge of losing tacit knowledge regarding machines or the workflow when workers retire or 
change jobs. This impacts software architectures as well, whose intricacies are sometimes known 
only by some of the workers, who therefore become critical to the company. AI solutions can help to 
grasp this tacit knowledge: for instance, solutions exist composed of a speech recognition system 
connected to a database in the background, allowing experienced workers to orally relate their 
experience, which is then structured and made available to others. As was noted by the experts who 
participated in our consultation, this aspect is particularly important for small and medium 
enterprises, which sometimes have very scarce key personnel to the company. 

Lastly, regarding the use of AI for sustainability (Mao, 2019), there is a double incentive for the 
manufacturing industry to adopt AI both to improve the carbon footprint and to reduce waste and 
inefficiencies, as both of these aims entail economic benefits. As was flagged by some of our experts, 
Digital Innovation Hubs in synergy with industrial clusters already operate on the ground to raise 
awareness in this respect. 

 

Barriers and challenges to adoption 

Regarding challenges to adoption, we identified concerns around data as prominent (Escobar, 2021): 
while AI demands huge amounts of data, a lot of manufacturing companies either deal with small 
datasets or face a complete lack of data. As an example, in predictive maintenance, a specific machine 
could display a certain effect very seldomly, leading to a paucity of such data points. Additionally, it 
would also be strongly machine-dependent, hindering generalizability: for instance, the data coming 
from a specific machine model can be affected by differences in setting, parameters and working 
conditions and, furthermore, a given company may have several machines but only one instance of 
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each type, especially in the SME context. In this respect, the establishment of the Manufacturing Data 
Spaces, forecast by the Digital Europe Programme, is identified as a possible solution which could 
help to overcome this scarcity of data. 

Furthermore, finding training data that is unbiased or where bias is controlled is extremely difficult 
for many companies and it creates a strong divide between larger companies, which can access such 
data to ramp up their AI solutions faster, and small and medium ones which cannot obtain data so 
easily. A possible solution, as pointed out by the experts, could be to create a standard and a 
certification to prepare quality training datasets. The variety of machine tools and contexts in 
manufacturing also leads to the need for tailoring AI solutions8 : as there is no off-the-shelf 
solution for manufacturing, every application has to be adapted to the situation. This can hinder AI 
uptake for SMEs, whose IT departments may struggle to carry out the needed tailoring to the 
company’s needs. 

Beyond technical hurdles, the success of an AI application in manufacturing depends critically on 
making it human-centric, by co-designing together with the workforce the uptake of AI 
solutions (Waschull, 2022). This may be achieved by creating synergies, for instance up-skilling the 
workforce and providing training to master digital tools so that, instead of being passive, users can 
exert more control on the tools and help their calibration. 

Lastly, buy-in of management may pose a challenge to the adoption of AI (Makarius, 2020): several 
experts pointed to the issue of managers understanding the added value of adopting AI technologies 
and applications. The perceived lack of understanding stems mostly from the difficulty in grasping 
whether this type of investment can in the long run bring a bigger return on investment (ROI). Indeed, 
it is generally difficult to forecast the ROI from AI uptake, which therefore hinders the upfront 
investment in AI. 

 

                                           
8 https://www.protocol.com/enterprise/landing-mariner-ai-manufacturing-defect 
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4 Investigating the uptake of AI technologies in the manufacturing sector 
worldwide and in the EU 

To monitor and assess AI uptake in the manufacturing ecosystem, no single knowledge stream can 
capture all the different facets involved. The approach adopted in this report therefore fuses several 
data streams, complementing the qualitative research described in the previous sections. We attempt 
to convey a holistic picture of the technology-innovation cycle of AI uptake, starting with scientific 
research using data from scientific publications and EU-funded R&D projects, moving to product 
design with patent data, and reaching marketing and business development using venture capital 
data (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: JRC 

 

Scientific research: Scientific publications and H2020 projects 

Analysing scientific publications is important to detect the emergence of key innovations and concepts 
as well as their intra-relationships. Indeed, such understanding of research outputs in terms of 
scientific publications sheds light on the first stage of the technological-innovation lifecycle. To this 
end, we queried Scopus, the most comprehensive database for peer-reviewed literature, with sets of 
keywords related to manufacturing to obtain a sample of relevant publications. 

Figure 2. Representation of the technology-innovation cycle and the data sources used at 
each step. 
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Figure 3. Topics in AI and Manufacturing scientific publications 

 
 Source: JRC, data: Scopus 

To gain insight into the relevant concepts for AI in manufacturing, we first performed a topic analysis, 
depicted in Figure 3. The emerging topics (the five boxes in the figure) display concepts that most 
frequently co-appear in scientific publications. As shown in the figure, AI and Machine learning emerge 
strongly in the manufacturing literature, as do 3d printing, additive manufacturing, sustainability and 
supply chain management. 

In the network of publication we can observe some tightly linked couples of concepts : the two natural 
associations of AI with big data and IoT with machine learning, confirms the fact, also mentioned by 
the experts, that AI in manufacturing is intrinsically related to data but also infrastructure (as is the 
case of IoT). Another strong association is the one between sustainability and additive manufacturing, 
which corroborates the fact, emerging from our expert consultations, that advanced manufacturing 
technologies can support efforts towards sustainability. 
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Figure 4. Temporal evolution of publications in Manufacturing and the share of AI and 
Manufacturing publications. 

 
Source: JRC, data: Scopus 

The temporal evolution of scientific output, depicted in Figure 4, shows that, although publications in 
manufacturing increased exponentially since 2018, the share of publications in AI and Manufacturing 
plummeted after 2019 from more than 25% to around 10%. The reason for this steep decrease can 
be traced back to a spike in publications related to supply chain management in 2020 caused by the 
COVID-19 crisis, which did not feature AI-related keywords. 

Lastly, in terms of the geographical distribution of scientific output (Figure 5 below), EU27 is leading 
the rank, with more than 10000 publications in manufacturing, of which 20% delving also into AI. 
China and US follow albeit with much smaller numbers, around 6000 and 5000 respectively.  

At the level of EU Member States (Figure 5), Germany accounts for a fifth of the EU’s AI-related 
scientific output in manufacturing, followed by Italy, Spain and France. For these countries, the 
percentage of AI and manufacturing related publications accounts for approximately 10-12% of their 
total output of scientific publications. These four countries contribute up to the 65% of the whole 
EU27 scientific output in AI-related manufacturing. This ranking is also mirrored by Horizon2020 
projects: Germany, Italy, Spain and France coordinate or participate in more than 150 projects each, 
with again around 10% of them geared towards AI.  
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Figure 5. Geographical distribution of scientific publications. Top: worldwide, bottom: 
EU27 

 

 
Source: JRC, data: Scopus 

From scientific publications and H2020 projects, a more holistic picture emerges if we analyse the 
patterns of bilateral collaborations, depicted by the chord diagrams in Figure 6 below. Contrasting 
with Figure 5, we can note that the four countries more active individually also form tight partnerships, 
both in EU-funded projects (left) and in scientific publications (right). 

In Figure 6 we note that there are a larger number of more intense connections between countries 
on H2020 than in publications. Therefore, H2020 seems to be successful in the aim of networking 
and connecting the MS. We can futher note that the scientific collaborations are sometimes not closely 
mirrored by the partnerships in H2020 projects: for instance, Germany shares a strong link with 
Austria which is not as strong in the H2020 network and the same happens for Sweden and Finland. 
This phenomenon can be probably traced back to the physical proximity and closeness in culture and 
language. Furthermore, Italy, France and Spain, despite being still very close collaborators in terms of 
shared scientific output, do not share links as strong as in the H2020 network. 
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Figure 6. Networks of bilateral collaboration on H2020 projects (left) and scientific 
publications (right). 

  
Source: JRC, data: CORDIS 

Technological innovation: Patents 

 

Moving one step further in the technological-innovation lifecycle, to product design and engineering, 
patents are a crucial tool for the protection of the technological innovations carried by new products; 
therefore, we analyse international patent data to shed light on the innovation landscape driving the 
uptake of AI in manufacturing. The dimensions of our analysis are chosen to illustrate who the drivers 
and owners of innovations are, where these drivers and owners are located and what the innovations 
at the intersection of AI and manufacturing comprise, i.e., what technologies they involve and build 
on.   

The richness of patent data allowed us to distinguish between enabler patents and application 
patents: the former, enabling inventions, provide the means for AI to be integrated into systems, e.g., 
sensors collecting data that will be used by an AI system, whereas the latter, application inventions, 
are products directly embedding AI for the manufacturing sector.  

Through this classification of our data, we investigate differences in AI uptake for the two types of 
innovation activity separately, allowing for a finer-grained analysis.  

Looking at the global picture, we observe that four countries stand out in terms of assignee countries 
of AI in manufacturing patents: China, South Korea, Japan and the US. Together with the EU27, 
these countries account for more than 86% of all patent families in the sample. Figure 7 
shows the number of patent families for enabler and application patents filed by the main assignees 
between 2000 and 2020. We note that the number of patent families has almost exponentially 
increased over the course of the last decade for both AI enablers and AI applications. China and South 
Korea have had especially strong growth rates, with China overtaking the US in total patent filings in 
2018. 

To extend the analysis of absolute patent ownership figures, we analyse the patent citations, with 
existing patents being cited as prior art in the context of new patents. Thus, the number of citations 
received by a patent provides information of its importance in terms of innovation and knowledge 
flows.  
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Figure 8 shows the number of patent families for the EU27 and four selected countries for enabler 
and application patents respectively betwen 2000 and 2020, based on a subsample of the data which 
was created by keeping only the top 5% most cited patent families. Comparing with Figure 7, we 
observe that, while China dominates patent ownership in absolute terms, the majority of 
highly cited patents are owned by the US. Besides the US, also the EU27 gains shares in patent 
ownership relative to China once the sample is reduced to highly cited patents. This suggests that US 
is the most influent country with respect to patenting activity in AI and manufacturing. 

Figure 7. Temporal distribution of patents filed in AI and manufacturing. Left: Enabler 
patents, Right: Application patents. 

 
Source: Orbit/Questel, JRC 2022 

Figure 8. EU27 in comparison to top assignee countries, subset of 5% most cited patents. 
Left: AI Enablers, Right: AI Applications. 

 
Source: Orbit/Questel, JRC 2022 

To further illustrate knowledge flows within and across countries, we represent the data on patent 
citations in a network in Figure 9 (below). We pool all citations in our 2000-2020 patent data and 
illustrate the resulting links between countries which exceed 20 citations. Our analysis reveals 
relatively strong bilateral knowledge transfers between the US and the EU27. On the other 
hand, Chinese assignees seem to mostly cite other Chinese assignees. Besides their links to 
the US, the EU27 Member States most frequently interact with other EU27 Member States, 
Switzerland, UK and Japan. 

In addition, the citation network analysis reveals that Israel, Taiwan, Korea and Canada are relevant 
in the citation landscape, with relatively strong bilateral links with the US.  
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Figure 9. AI in manufacturing, patent citation links, 2000-2020, subset of links with more 
than 20 citations 

 
Source: Orbit/Questel, JRC 2022 

 

Focusing on the EU Member State patenting landscape:  Figure 10 and Figure 11 below depict the 
number of patents of the twenty assignees with the largest patent ownership within the EU27 for 
enabler and application patents respectively. The distinction between granting and pending patents 
can show how established an assignee already is in AI in manufacturing, As assignees with a relatively 
large number of granted patents will tend to belong to the early innovators. 

In Figure 10 we observe that, among the top twenty EU assignees for enabler patents, 5 have their 
headquarters in Germany, 5 in France, 4 in the Netherlands and 3 in Belgium. Siemens and Robert 
Bosch GmbH, the top two assignees,  own more patents in AI in manufacturing than the rest 
of the top 20 combined. As both Siemens and Robert Bosch GmbH are German firms, this indicates 
that Germany is a technology leader within the EU27 in the context of enabler patents in AI in 
manufacturing. Moreover, in terms of organisation type, only four assignees listed in Figure 10 are 
research centers, the other sixteen being companies. Thus, the general innovative power in AI in 
manufacturing originates more from companies than from independent institutional 
research facilities.  
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Figure 10. Top enabler patents assignees in the EU27. 

 
Source: Orbit/Questel, JRC 2022 

For AI application patents (Figure 11), half of the top 20 assignees have their headquarters in 
Germany, which is then followed by the Netherlands and France with 3 assignees in the top 20 each. 
However, the assignee with the single largest patent ownership in AI applications in manufacturing is 
ASML, a Dutch company whose patents concern the production o semiconductors. As with AI enabler 
patents, application patent ownership appears to be concentrated in a few innovative 
firms. 

Figure 11. Top application patents assignees in the EU27 

 
Source: Orbit/Questel, JRC 2022 
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Considering that manufacturing encompasses several industrial sectors, we investigated at a finer 
scale our patent sample in AI and manufacturing to identify sectorial specialisations of EU27 
patenting output. To compare the EU27 with the four countries already highlighted in the global 
comparison, China, US, South Korea and Japan, we calculate the revealed comparative specialisations 
(RCAs) for each assignee country/region and sectorial domain. The revealed comparative advantage 
is defined as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑖𝑖,𝑘𝑘𝑤𝑤 =

𝑅𝑅𝑐𝑐𝑖𝑖,𝑘𝑘𝑤𝑤
∑ 𝑅𝑅𝑐𝑐𝑖𝑖,𝑘𝑘𝑤𝑤𝑤𝑤
∑ 𝑅𝑅𝑐𝑐𝑖𝑖,𝑘𝑘𝑤𝑤𝑖𝑖
∑ 𝑅𝑅𝑐𝑐𝑖𝑖,𝑘𝑘𝑤𝑤𝑖𝑖,𝑤𝑤

=  

𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑜𝑜𝑠𝑠𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 𝑎𝑎𝑖𝑖 𝑎𝑎𝑐𝑐 𝑎𝑎 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑐𝑐 𝑘𝑘𝑤𝑤
𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑜𝑜𝑠𝑠𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐 𝑎𝑎𝑖𝑖 𝑎𝑎𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑐𝑐𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑤𝑤𝑜𝑜𝑐𝑐𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 𝑎𝑎𝑐𝑐 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑐𝑐 𝑘𝑘𝑤𝑤
𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑤𝑤𝑜𝑜𝑐𝑐𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑤𝑤𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠 𝑎𝑎𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑐𝑐𝑠𝑠

 

This index gives us the relative strenght (or weakness) for a country with respect to the others in a 
given sector. An RCA larger than one means that a country has a relative specialisation in a given 
sector, while an RCA between 0 and 1 means that the country is less specialised when compared to 
other countries.  

As shown in Figure 12, EU27 displays a relative specialisation in 20 out of 35 sectors for AI 
enablers in manufacturing. “Micro-structure and nano-technology” stands out as the sector with 
the highest specialisation for the EU27 patenting output, followed by Biotechnology and 
Pharmaceuticals.. 

For AI application patents in manufacturing (Figure 13 below), we observe that EU27 displays a 
relative specialisation in 13 out of 35 sectors. Remarkably, we observe an RCA of about one for 
the EU27 in “micro-structure and nano-technology”, implying that the EU27 does not have a relative 
specialisation in this sub-domain for application patents, even though it appears to specialise in this 
domain when it comes to enabler patents. Indeed, upon inspection, we uncovered that the assignees 
for enabler and application patents tend to differ since universities and research centres often are 
holders of enabler patents, while private companies are more frequent in application patents. Hence, 
this may suggest that difference between the two RCA rankings for EU27 may be caused by a stronger 
research landscape over the private sector one in terms of patenting output. 



26 

Figure 12. Revealed comparative advantages of the EU27, enabler patents. 

     
Source: Orbit/Questel, JRC 2022 
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Figure 13. Relative comparative advantages for the EU27, application patents. 

      

Source: Orbit/Questel, JRC 2022 

 

Start-up Ecosystem: Venture Capital Investments in AI and manufacturing  

Arriving to the last step of the technological-innovation lifecycle, business development, we turned to 
data on Venture Capital (VC) investments as they can provide rich information on the adoption of 
emerging technologies with the potential to transform industrial sectors.  To this end, we merged two 
datasets, Dealroom and Crunchbase, in order to obtain a final sample with an extensive coverage and 
identified investments for AI and manufacturing as well as the companies receiving them. 

Firstly, from the temporal evolution of investments (Figure 14), we observe that  the investments 
geared towards AI and manufacturing experienced a steep increase over the years  2015-2017, 
passing from around 12% to  almost 25% of overall VC funding for manufacturing. However, upon 
closer investigation, data shows that such a peak was  not the result of a systemic increase of 
investment in a specific subsector of manufacturing, but rather was caused by massive rounds of 
investments in two companies, OneWeb (a UK satellite manufacturer)  and NIO (a Chinese electric 
vehicle manufacturer) (Table 1). These two companies together accounted for 1.4 Bln in 2016, more 
than 60% of global AI and manufacturing VC investments. When analysing the trend without the 
influence of these two outlier companies, we still notice an increase of investements, starting in 2013, 
from 6% to 12%. Since 2013, VC investment in AI and manufacturing has accounted for 
between 10% and 15% of the total VC investment in the manufacturing sector.  
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Figure 14. Temporal evolution of VC investments (Bln EUR) 

 
Source: Crunchbase and Dealroom, JRC 2022 

Overall, VC investments in the manufacturing sector account for more than 160 Bln EUR, 
of which almost 18 Bln EUR are for AI and manufacturing investments, 11% of the total. 
The geographic distribution of AI and manufacturing investments follows closely the one for the total 
manufacturing investments: US and China as the largest recipients of VC funding in AI and 
manufacturing with a share of 59% and 15%, respectively, while European countries outside of the 
EU27 (mainly UK) account for 12%, surpassing the EU27 with 7% of global investments in AI and 
manufacturing (Figure 15). The start-up ecosystem for AI in manufacturing is less concentrated than 
the overall manufacturing startup ecosystem, indicating a greater geographical spread in participants. 

Figure 15. Geographical distribution of VC investments, worldwide. 

 
Source: Crunchbase and Dealroom, JRC 2022 

From our analysis at EU27 level (Figure 16), Germany, France and Sweden lead the ranking, by 
cumulatively accounting for more than 65% of the whole VC investments for European manufacturing 
companies, followed by Ireland (7%), Finland (6%) and the Netherlands (5%). On the other hand, the 
distribution of AI and manufacturing investments looks very different: Germany receives the largest 
share, over 45%, followed by Luxembourg (10%) and France (9%). Sweden, on the contrary, which 
receives more that 15% of overall manufacturing VC investments, accounts for less than 5% of AI 
and manufacturing investments. 
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Figure 16. Geographical distribution of VC investments, EU27. 

 
Source: Crunchbase and Dealroom, JRC 2022 

An analysis at company level (using the Dealroom database only) offers a finer understanding of the 
start-ups receiving the flow of VC investment. We created a network by linking companies which have 
similar description (Figure 17 top).  

After clustering, the resulting network displays four main communities of companies in the exterior 
rim corresponding to: industrial technology (which encompasses advanced manufacturing 
technologies such robotics and digital twins), 3d printing, biotechnologies and the remainder Other 
cluster of companies which is composed of more traditional companies, such as food manufacturing 
and construction. At the center of the network, we observe three clusters deeply intermeshed with the 
first ones, as they are composed by IT and Service-as-a-Service (SaaS) companies and companies 
working in the realm of automation. Lastly, transversal to the core of the network, is a cluster of 
companies working in domains closely related to Sustainability such as renewable energy and 
recycling. It should be noted that the percentage of AI and manufacturing startups in each of the 
clusters is very variable (Figure 16 bottom): technology-related clusters like 3d printing, automation 
and industrial technologies tend to feature a higher proportion of AI companies (between 40% and 
60% of startups considered); while, at the other end of the spectrum, we find the clusters related to 
broader sectors such as biotechnologies (where less than 20% of the companies are AI startups). 
Lastly, in Table 1, we display the startups in AI and manufacturing which are the top receivers of VC 
investments. 
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Table 1. Top AI and manufacturing startups. 

Region Name Raised Amount 
(Mln EUR) 

Country Description 

North 
America 
 

View Inc. 1270  US Smart eyewear 
ThoughtSpot 559  US Search engine for data 

analytics 
Symphony 388 US Communication Services 

Asia 
 

NIO 2180 CN Electric autonomous vehicles. 
Preferred 
Networks 

112 JP Applications of deep learning 
and robotics 

HeyGears 95 CN Digital 3D Printing Application 
Service Provider 

EU27 
 

Agile Robots 196 DE Industrial automation and 
robotics 

OCSiAl Group 134 LU Graphene nanotube 
production 

Spryker 
Systems 

125 DE Retail and e-commerce 
technology provider 

Other 
European 
country 
 

OneWeb 1580 UK Satellite manufacturer for 
internet connection. 

Scandit 110 CH Technology platform for mobile 
computer vision and 
augmented reality (AR) 
solutions for enterprises. 

ONI 92 UK Microscope manufacturing 
Source: Dealroom, JRC 2022 
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Figure 17. Network of manufacturing startups (top), percentage of AI startups in each 
cluster (bottom). 

 

 
Source: Dealroom, JRC 2022 
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Sustainability in AI and manufacturing: the data perspective 

In our data analysis, sustainability emerged in all the data streams considered, under different 
angles, thus highlighting its strong link to AI uptake in manufacturing. 

Indeed, we first observed in scientific publication data a strong association between sustainability 
and artificial intelligence clusters and, furthermore, between sustainability and additive 
manufacturing (Figure 3), suggesting that these two technologies are regarded as fundamental 
drivers of sustainability in the manufacturing-related literature.  

Patent data also points to evidence for the use of AI in manufacturing in the context of sustainability 
and climate change mitigation. Overall, we observed an exponential increase of sustainability-
related application patents, starting from around 40 worldwide in 2013 to peak at more than 400 
in 2019, a 10-fold increase in six years. On the other hand, less evidence for the emergence of climate 
change mitigation technologies emerges for enablers patents than in applications ones, 
sustainability-related enabler patents are in the order of a few tens worldwide. This suggests that the 
use of AI to solve concrete challenges in the manufacturing sector (e.g. optimization tasks as 
mentioned above) offers sustainability gains. On the contrary, enablers patents tend to be less 
manufacturing specific and, therefore, do not appear in the data since they address sustainability 
challenges beyond the manufacturing context. As to the geographical distribution, Asia, comprising 
China, Japan and South Korea, holds the largest share of sustainability-related application patents, 
with 55% of the total, followed by the US with 30% (Figure 18), while EU27 is third with 10%. 
Compared with the overall geographical distribution of AI and manufacturing application patents, 
which sees Asia cumulatively holding a share of 63% while US accounts for 24%, we see that US 
position with respect to climate-related patents is stronger. As for EU27, in both distributions, it 
accounts for 10%. In terms of growth, Asia is also the fastest growing region, starting from a few 
patents in 2013 to reach more than 200 in 2019, more than 30-fold increase; while for EU27 and US 
experienced a 10-fold increase over the same period.  

Regarding VC funding, we could find the signature of start-up companies related to sustainability: as 
shown in Figure 17, a cluster of companies whose business is deeply linked to sustainability 
objectives, such as waste management, recycling and renewable energy, was identified in the network 
analysis and, within this cluster, more than 35% of companies use AI in their endeavours. 
Furthermore, we observe that the cluster of sustainability startups is deeply intermeshed with the 
SaaS and the Automated technology ones, pointing to a strong correlation between companies 
using advanced technologies, such as automation, and sustainability-related ones. 

Figure 18. Geographical distribution of sustainability-related application patents. 

 
Source: Orbit/Questel, JRC 2022 
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5 Conclusions 
In this analysis, we blended two major sources of information to understand the uptake of AI in the 
manufacturing sector: a more qualitative one, with desk research and expert consultations and 
quantitative one, building on several data sources. This latter strand follows the technological-
innovation lifecycle of AI in manufacturing in analysing the stages of AI development and uptake: 
publications provides insight into research, patents providing insight into innovation capacity, and 
venture capital funding and start up ecosystem providing insight into market penetration. Overall, the 
current report shows that AI uptake in manufacturing has accelerated over the last decade, but it is 
still at its early stage and, in this section, we summarize its main takeaways.  

How is AI used in manufacturing? Enablers and applications 

The adoption of AI in manufacturing is enabled by a bundle of digital software and hardware used to 
collect, store and analyse data. Sensors and smart meters bridge the gap between machinery and 
data. Connected machinery and other pieces of manufacturing equipment form the internet of things. 
Digital twins constitute a digital representation of the physical resources and dependencies between 
them. Depending on the amount of data and computing intensity, running AI models may require the 
use of cloud computing services and high-performance computing.  

At the organization and planning level, AI applications help with demand forecasting allowing to 
optimise the degree of capacity utilisation or to automate the process of developing new products 
and adapt it to individual customer needs. At the level of manufacturing processes and shop floor, 
applications of AI range from scheduling optimisation, increasing the efficiency of resources allocation 
through supporting tasks performed by humans to oversight of manufacturing equipment and 
optimising its maintenance schedules, increasing machine longevity and decreasing costs. 

AI in manufacturing: a tool for the Green Deal? 

The analysis of different metrics of AI uptake in manufacturing shows an increasing trend linking AI 
with manufacturing and sustainability: for instance, this link strongly emerges in scientific publications 
in manufacturing, where these two topics, AI and sustainability, frequently co-appear. Similarly, in 
patent data, we observed a steep increase of climate-related patents filings, leading to a 10-fold 
increase in the period since 2013.  

The areas in which AI and digital technolgies seem to have a positive impact in terms of sustainability 
include additive manufacturing, waste management, recycling and renewable energy and, from the 
data related to startup activity, we observed a strong link between companies using advanced 
technologies, such as automation, and sustainability-related ones. In addition, by optimising 
production processes and resource use, AI may have positive impacts on energy consumption and 
waste generation of manufacturing activities. However, to assess the impact of AI on sustainablity, 
an holistic perspective is required9, since AI can have a beneficial impact on the energy balance but 
it is an important carbon emitter by itself, for instance when training of large models is necessary 
(Dhar, 2020, Strubell, 2019). Hence, future work in this direction should consider the environmental 
impact and energy consumption of digital infrastructure powering AI applications as well as increased 
demand driven by lower prices and new products developed with the help of AI.  

Uptake in the AI and manufacturing innovation lifecycle: research, innovation and market 
application 

We observed an exponential increase of AI in manufacturing scientific publications since 2014. This 
coincides with advances in deep learning and increasing interest in 3D printing and additive 
manufacturing. Slightly later, the rate of AI in manufacturing innovative activities also began to 
increase, as demonstrated by increased patenting activity: since 2016, there has been a surge in 
patents concerning both enablers and applications of AI in manufacturing. Venture Capital funding of 

                                           
9 https://medium.com/@AINowInstitute/ai-and-climate-change-how-theyre-connected-and-what-we-can-do-

about-it-6aa8d0f5b32c 



34 

start-ups offering AI-driven products and business models in various domains of manufacturing has 
also increased since 2016. In the last five years, the annual VC investment in AI and manufacturing 
has accounted for up to 15% of the total VC investment in the sector, with a significant share of 
these investments going to industrial automation start-ups, including robotics, digital twins and 3D 
printing solutions. 

Europe’s position in the global AI and manufacturing landscape 

Comparing the EU27 with the main global economies using the technological life-cycle framework, 
we observed that it has a strong position at the initial stages of AI and manufacturing development 
and research, and that it becomes less prominent in the later stages of the technology lifecycle 
(innovation and market applications). For example, the EU scientific output is twice that of US or China. 
However, when looking at the number of patents (as proxy for innovation activity) or VC funding 
received by start-ups (as a proxy for market application), the EU starts to fall behind the US and 
China. Especially in terms of patent applications, Asia broadly leads, with South Korea and Japan 
significantly increasing their position in the last decade, and China overtaking the US in total patent 
filings in 2018. It is worth nothing, however, that China’s leadership in patents is moderated when 
the quality of patents is considered, as measured by inter-patent citation, where the US still has the 
highest share of the most cited patents indicating that it is the source of the most innovative enablers 
and applications of AI in manufacturing. 

Looking at the final stage of the technology lifecycle, i.e. commercialisation and market uptake of AI 
in manufacturing, one can observe that the US (59%) and China (15%) account for most of the VC 
funding for AI in manufacturing start-ups. EU27 start-ups receive only 7% of the total funding in this 
domain, while the UK and Switzerland together account for 12%.  

The EU’s shortcomings in transforming scientific output into commercial applications is illustrated by 
its revealed comparative advantage (RCA) in distinct technological fields of enablers and applications 
of AI in manufacturing. For example, compared to the main global economies, the EU displays a high 
degree of specialisation for enablers in AI in manufacturing in the field of Micro-structure and nano-
technology. However, this advantage diminishes in AI in manufacturing applications in this domain. 
Considering that the origin of AI in manufacturing enablers are universities and research centres and 
applications mostly come from private companies, this exemplifies the weak commercial uptake of 
AI in manufacturing in the EU. 

Within the EU27, Germany, France, Italy and Spain lead in all the rankings of AI uptake in 
manufacturing. This indicates that there are significant disparities in the level of AI uptake in 
manufacturing across the EU Member States.  

Challenges to AI uptake in manufacturing  

As illustrated by the case of the EU, scientific leadership and advanced manufacturing base in the 
economy are not a guarantee to transform research results into commercially viable AI-enabled 
products and services. A central and recurring theme in the literature and in our expert consultations 
was the need to access data and, furthermore, the need for quality data to train AI models and this 
data scarcity affects SMEs harder. In this sense, the establishment of the Manufacturing Data Spaces 
and the Testing Experimentation Facilities by the European Commission could help to address this 
barrier, allowing also smaller actors to deploy AI solutions. If compared to other sectors like health or 
smart mobility (De Nigris et al., 2020; De Nigris, Hradec, Craglia, & Nepelski, 2021), data presents 
less sensitivities in the context of manufacturing, this does not make AI uptake easier. Non-
technological elements play a critical role, for example, as AI adoption requires re-thinking and re-
designing existing processes, structures and business models, with the participation of 
both workforce and management appears crucial. To this end, initiatives to raise awareness about 
opportunities by giving practical examples, providing demonstrations and showcases and sharing best 
practices could help filling this need. Furthemore, to bridge the gap between research and business,  
activities geared towards providing information could be beneficial, such as easing access to expert 
networks, events and publications. 
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Regarding management buy-in, however, it is often unclear which benefits AI can bring on the ground 
and, moreover, it can still be difficult to quantify the return on investment of adopting AI in 
manufacturing. Hence, there is a clear need for training and raising awareness at the 
management level. On the other hand, at the level of the workforce, AI delivers its best results when 
deployed in synergy with the operator, who holds vast process knowledge and experience. This domain 
knowledge may go untapped if the synergy is not established or lost if the operator retires or switches 
jobs. Hence, upskilling and training the workforce must be planned both to ensure an AI 
deployement apt to meet their needs (e.g. in terms of workflow management), and to ensure the best 
results by leveraging the tacit domain knowledge held by the operators. 
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Annexes 
Annex A. Methodology for Elsevier SCOPUS data analysis 

We have obtained the complete metadata for articles concerning manufacturing and AI from the 
Elsevier API. We queried papers with a combination of the following keywords : 

• Manufacturing keywords: 

MANUFACTURING OR INDUSTRIAL AUTOMATION OR MACHINERY MANUFACTURING OR SUPPLY CHAIN 
MANAGEMENT OR INDUSTRY 4.0 OR FACTORY 4.0 OR ADDITIVE MANUFACTURING OR INDUSTRIAL 
ANALYTICS OR SMART MANUFACTURING OR AUTOMATION INDUSTRY OR "3D" PRINT+ OR LEAN 
MANUFACTURING OR ROBOTIC PROCESS AUTOMATION OR PROCESS AUTOMATION OR SMART 
FACTORY OR WORKFLOW AUTOMATION OR INTELLIGENT AUTOMATION OR THREE DIMENSIONAL 
PRINT+ OR DISCRETE MANUFACTURING OR PROCESS MANUFACTURING OR AGILE MANUFACTURING 
OR PREDICTIVE MAINTENANCE OR PREVENTIVE MAINTENANCE OR PRODUCTION LINE OR 
FABRICATION OR MANUFACTURING EXECUTION OR ASSEMBLY LINE 

• AI keywords:  

artificial intelligence, deep learning, machine learning, neural network, reinforcement learning 

 

After cleaning the data for removal of duplicates, we had N = 48299 records.  

The topic clustering was performed using Latent Dirichelet Allocation (LDA). We investigated the 
performance of the algorithm on our data by imposing 5,10,15 and 20 topics and we manually 
inspected the quality of the topics obtained, lastly setting for 5 as displayed in Figure 3. 

 

Annex B. Methodology for Orbit patent data analysis 

For patent data, we mined a comprehensive patents database using Orbit Intelligence software by 
Questel. This database comprehends the World Intellectual Property Organization (WIPO), the 
European Patent Office (EPO) and the national authorities in UK, Canada, France, Germany, China, 
Japan, South Korea and India, totalling over 100 patents authorities. 

The database records come in the form of ‘FamPat family numbers’: such families of patents are 
invention-based, so that all the publication stages of an invention as well as documents from different 
patenting authorities are associated to only one FamPat number. 

In order to isolate relevant patents in the Orbit database, we performed the following steps: 

1. We first used the advanced search tool of Orbit software, looking for the co-presence of the AI-
related and manufacturing-related keywords listed above in Annex A. 

3. The above steps of advanced keyword search and removal of technological domains were applied 
to perform two searches: 

• One search, called “Pure”, restricting the search to just the most relevant patents fields: Title, 
Abstract, Claims, Object of Invention. 

• The second search, called “Extended”, included also the field Concepts, beyond the 
aforementioned Title, Abstract, Claims and Object of Invention. 

 

4. We built a classifier which tags the patent as follows: 

• Application: patents where AI and manufacturing keywords and concepts appear with 
equal weight. 
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• Enablers: patents mostly featuring AI related concepts and keywords, but which could we 
used in the context of manufacturing, albeit not exclusively. It is often the case, for 
instance, of smart sensors. 

• Spurious: patents where the presence of the AI and manufacturing keywords is very weak. 

 

6. The resulting dataset is the union of the Pure and Extended dataset, once both have been filtered 
by the classifier. The resulting cohorts contained N = 3201 records for Enabler patents and N=9442 
records for Application patents. 

 

Annex C. Estimation of false positive and false negatives for API queried databases. 

 

False positives: After several cleaning and validation rounds, the share of false positives in our 
datasets is below 5%. 

False negatives: For Scopus and patent data from Orbit having a precise estimation of false 
negatives is challenging as both datasets are queried via an API; hence, there may be records which 
are not captured by our queries and, not having access to the entirety of the datasets, their 
quantification remains imprecise. 

Hence, to palliate to this intrinsic limitation, we perform queries to the APIs as general and as 
comprehensive as possible to circumscribe large swaths of the datasets, which we then clean 
afterwards to remove the false positives. Furthermore, we adopt a hybrid strategy for curating the 
queries, both supervised (with experts validating the keywords) and unsupervised (by using topic 
modelling from different sources like for instance Twitter to further uncover keywords). 

 

Annex D: Dealroom and Crunchbase data analysis 

 

In order to look at the level of AI uptake among start-ups in the manufacturing sector, venture capital 
(VC) investment was analysed using two datasets provided by Dealroom10 and Crunchbase11. 

For our analysis, we first filtered in the datasets the manufacturing related records. This selection 
was made by filtering the companies that are either in the “manufacturing” industry or that feature 
the manufacturing related keywords in the “Tags” or the “Descprition” fields and whose funding is 
compatible with being a start-up12. 

Furthermore, we mined in the first selection the companies featuring AI-related keywords in their 
description to isolate a subset of companies which, furthermore, were backed by VC between 2000 
and 2020, either by angel investors or by venture capital funds.  

As we merged two different datasources, we made futher checks using several fields such as the 
domain to isolate companies in the intersection of the two datasets in order to count them only once. 
The resulting dataset contains N = 19467 VC deals. 

Lastly, to build the network of the different specializations in manufacturing start-ups, we linked 
every company to similar ones, according to the similarity in their description and we then clustered 
the resulting network using the Force Atlas 2 algorithm. 

 

                                           
10 https://app.dealroom.co/ 
11  https://www.crunchbase.com/ 
12  Specifically, companies whose funding rounds were of the type: 'angel', 'seed', 'early VC', 'series a-i' and 'late VC'. 
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