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Machine learning for automation
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Machines achieve, or surpass, human performance 
at tasks for which intelligence is required

Machine learning (ML) has taught machines to...
recognize images translate between languages play complex games

…to name a few
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ML has the potential to support & enhance high-stakes decision 
making in a wide range of applications:

Machine learning for decision making

Education

Information 
integrity

Justice

Security

Health

Hiring

Finance
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misleading people in 
social media

discriminating minorities

increasing polarization 

Increasing number of missteps

Machine learning has been blamed to be one of the root causes
of an increasing number of missteps

causing car accidents



What went wrong in these cases?
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Machine learning has been mostly

Take decisions autonomously 
on the basis of 

passively collected data

developed for automation

passive setting
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Algorithmic and human decisions feed and influence
each other

reactive setting

Sequential decision 
making process

What went wrong in these cases?



Shortcomings of (traditional) ML models & algorithms
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Ignore feedback loop between 
algorithmic and human decisions
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Ignore feedback loop between 
algorithmic and human decisions

Fail to anticipate how individuals will react
to algorithmic decisions

Shortcomings of (traditional) ML models & algorithms
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Ignore feedback loop between 
algorithmic and human decisions

Do not account for strategic 
human behavior

Shortcomings of (traditional) ML models & algorithms
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Ignore feedback loop between 
algorithmic and human decisions

Do not account for strategic 
human behavior

Unexpected & undesirable personal, 
social and economic consequences

Shortcomings of (traditional) ML models & algorithms
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Fail to balance decisions between 
machines and humans

Ignore feedback loop between 
algorithmic and human decisions

Do not account for strategic 
human behavior

Shortcomings of (traditional) ML models & algorithms
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They are unable to collaborate with humans

Ignore feedback loop between 
algorithmic and human decisions

Do not account for strategic 
human behavior

Shortcomings of (traditional) ML models & algorithms

Fail to balance decisions between 
machines and humans
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Ignore feedback loop between 
algorithmic and human decisions

Do not provide actionable 
insights

Do not account for strategic 
human behavior

Shortcomings of (traditional) ML models & algorithms

Fail to balance decisions between 
machines and humans



14Interpretability is necessary to use 
ML in critical domains with consequential decisions.

Ignore feedback loop between 
algorithmic and human decisions

Do not account for strategic 
human behavior

Shortcomings of (traditional) ML models & algorithms

Do not provide actionable 
insights

Fail to balance decisions between 
machines and humans
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Balancing decisions between human and algorithmic decisions

Accounting for strategic human decisions

A glimpse on recent advances on human-centric ML models 
and algorithms. We will focus on:

Outline of the lecture

Accounting for the feedback loop between algorithmic and human decisions

Disclaimer. These are emerging topics. The goal of this lecture is to introduce 
you to a new set of problems and, for each problem, show you one solution, 
not the solution. 



A general problem setting
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Features Aim to predict a 
ground truth label

Informed by
Label 

predictionsDecisions Decision
policy

Predictive 
model



Example 1: loan decisions
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Individual
receives loan

Individual 
is rejected

Individual 
defaults

Individual
pays back

Informed by
Label 

predictionsDecisions
Predictive 

model
Decision

policy



Example 2: bail decisions
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Individual
is released

Individual 
remains jailed

Individual 
reoffends

Individual
does not reoffend

Informed by
Label 

predictionsDecisions
Predictive 

model
Decision

policy



Example 3: medical diagnosis
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Individual
needs further

tests

Individual 
doesn’t need 
further tests Low severity of 

Drusen’s disease

Informed by
Label 

predictionsDecisions Decision
policy

Predictive 
model

High severity of 
Drusen’s disease



Utility of a decision policy
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The decision maker aims to deploy a decision policy that 
maximizes a very general definition of utility:



Utility of a decision policy
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If a loan is granted and individual… repays:
… defaults:

The decision maker aims to deploy a decision policy that 
maximizes a very general definition of utility:

Example (loan decisions)
If a loan is 
not granted:

The parameter      measures the cost of offering a loan in units of repaid loans



Benefits of a decision policy
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To ensure fairness, the decision maker may constrain the 
benefits individuals obtain:

Problem 
dependent



Benefits of a decision policy
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To ensure fairness, the decision maker may constrain the 
benefits individuals obtain:

Problem 
dependentExample (loan decisions)

Statistical parity:
Ensure the men and women 
have the same probability 
of receiving a loan



Deterministic threshold rules
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Under some technical conditions, deterministic threshold rules are
optimal decision policies:

c
1 1

[Corbett-Davies et al., KDD 2017]



Deterministic threshold rules

25

Under some technical conditions, deterministic threshold rules are
optimal decision policies:

c
1 1

Under fairness constraints,
we just need two thresholds: 1 1

[Corbett-Davies et al., KDD 2017]



Why are deterministic threshold rules optimal?
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1

To realize why deterministic threshold rules are optimal, rewrite 
the utility of the policy as follows:

It is only positive if

c
1

If                             , 
make              ,
otherwise, make

[Corbett-Davies et al., KDD 2017]



So, are we done?
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Let’s look into the technical conditions

1. The predictive model is perfect

2. The label/feature distributions and the policy are independent

3. Individuals are not strategic
Individuals do not seek to maximize their benefit



So, are we done?
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1. The predictive model is perfect

2. The label/feature distributions and the policy are independent

3. Individuals are not strategic
Individuals do not seek to maximize their benefit

In practice, these technical conditions 
are (often) violated.

Let’s look into the technical conditions



Dealing with imperfect predictions
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Assume the predictive model                                        trained using 
historical data is imperfect, i.e.,

We will distinguish two different cases:

(b) Historical data is sampled from the ground 
truth data distribution

(a) Historical data suffers from selective labels 
[Lakkaraju et al., KDD 2017]

More common

Less common



Historical data suffers from selective labels
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Historical data is not sampled from the ground truth distribution 
but a distribution induced by a previously deployed policy

Data distribution induced by 
historical policy

Historical data only contains individuals 
who received a loan in the past

Deployed historical policy

Example
Loan decisions:

[Kilbertus et al., AISTATS 2020]

The (induced) label/feature 
distribution & policy are 
dependent!



The (induced) label/feature 
distribution & policy are 
dependent!

Historical data suffers from selective labels
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Historical data is not sampled from the ground truth distribution 
but a distribution induced by a previously deployed policy

Data distribution induced by 
historical policy

Historical data only contains individuals 
who received a loan in the past

Deployed historical policy

Example
Loan decisions:

[Kilbertus et al., AISTATS 2020]

This creates a         feedback loop between 
human decisions and algorithmic decisions



Are threshold rules provably suboptimal?

Take the optimal policy under the original data distribution 
and the data distribution induced by the historical policy:

32
[Kilbertus et al., AISTATS 2020]



Are threshold rules provably suboptimal?

Proposition (negative result!). If                   then 

33
[Kilbertus et al., AISTATS 2020]

Take the optimal policy under the original data distribution 
and the data distribution induced by the historical policy:



In which class of policies lies the optimal decision policy?

It lies in the set of exploring policies.

A policy      is exploring iff the true distribution      is
absolutely continuous with respect to

34

on any measurable set 
with positive probability under P

[Kilbertus et al., AISTATS 2020]



In which class of policies lies the optimal decision policy?

Proposition (positive result!). If       is a exploring policy, 

Set of exploring policies 35Induced distribution!

It lies in the set of exploring policies.

A policy      is exploring iff the true distribution      is
absolutely continuous with respect to

on any measurable set 
with positive probability under P

[Kilbertus et al., AISTATS 2020]



Not all exploring policies are (equally) acceptable
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Consider a 
lending scenario

Give loans to everyone,                            for all    
Gives loans to every individual at random,                                  , for all

The following decision policies are exploring:

Who thinks a bank will do well under these policies? J

[Kilbertus et al., AISTATS 2020]



Learning exploring policies
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Log-derivative and 
reweighting tricks

1. Deploy an initial exploring policy , which may be far 
from optimal for not too long.

2. Use data gathered with this initial exploring policy to fit a 
new parameterized exploring policy using SGA, i.e.,

Distribution induced 
by initial policy

New policy3. Deploy & gather data with        and
fit a better exploring policy. Repeat. 

[Kilbertus et al., AISTATS 2020]



Learning exploring policies
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Log-derivative and 
reweighting tricks

2. Use data gathered with this initial exploring policy to fit a 
new parameterized exploring policy using SGA, i.e.,

Distribution induced 
by initial policy

New policy3. Deploy & gather data with        and
fit a better exploring policy. Repeat. 

Learning to decide rather than
learning to predict!

[Kilbertus et al., AISTATS 2020]

1. Deploy an initial exploring policy , which may be far 
from optimal for not too long.



Time, 
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Example 1: strictly monotonic label distribution 

Feature value, 
Ut

ili
ty

,

Parameterized exploring 
policies

Deterministic threshold rules

Higher is
better

[Kilbertus et al., AISTATS 2020]



Time, 
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Example 2: nonmonotonic label distribution 

Feature value, 
Ut

ili
ty

, Parameterized exploring 
policies
Deterministic threshold rules

Higher is
better

[Kilbertus et al., AISTATS 2020]



Historical data is sampled from the ground truth distribution
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There are situations where the historical data is sampled from
the ground truth distribution.

If a person has (or has not) a disease, this fact 
does not change after a 
medical diagnosis by a doctor

Then, given the latest deep ML model, can we just 
gather enough data to train a perfect model?



Machines learning is sometimes worse than humans
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On some instances, machine predictions are still
worse than predictions made by human experts

Machines are 
better than 

humansMachines are 
worse than 

humans

Task: estimating severity of 
diabetic retinopathy

[Raghu et al., Arxiv 2019]



Machines learning is sometimes worse than humans
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On some instances, machine predictions are still
worse than predictions made by human experts

Machines are 
better than 

humansMachines are 
worse than 

humans

Task: estimating severity of 
diabetic retinopathy

Can we then         balance predictions 
between humans and machines?

[Raghu et al., Arxiv 2019]



Machine learning for different automation levels
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Key idea: develop machine learning models that are optimized
to operate under different automation levels

They take decisions for a given fraction of the instances and 
leave the remaining ones to humans

feature space

Severity assessed
by machine

Severity assessed
by doctor

[De et al., AAAI 2020]



Optimizing the machine during training and test time
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Key idea
optimize the design of the machine during training

[De et al., AAAI 2020]



Optimizing the machine during training and test time

46

Key idea
optimize the design of the machine during training

feature x

severity y

1. The machine model is a 
linear function 

2. We can defer some samples 
to humans

[De et al., AAAI 2020]



Optimizing the machine during training and test time
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Key idea
optimize the design of the machine during training

feature x

severity y

1. The machine model is a 
linear function 

2. We can defer some samples 
to humans

feature x

severity y

Machine model
is not optimized 
during training

Machine model

[De et al., AAAI 2020]



Optimizing the machine during training and test time
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Key idea
optimize the design of the machine during training

feature x

severity y

1. The machine model is a 
linear function 

2. We can defer some samples 
to humans

feature x

severity y

Machine model
is not optimized 
during training

Machine model

[De et al., AAAI 2020]

Often called
learning to defer



Optimizing the machine during training
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Key idea
optimize the design of the machine during training

Machine model
is optimized 

during training

feature x

severity y

feature x

severity y

1. The machine model is a 
linear function 

2. We can defer some samples 
to humans

Machine model

Machine model
is not optimized 
during training

feature x

severity y Machine model

[De et al., AAAI 2020]

Often called
learning to defer



Optimizing the machine during training
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Key idea
optimize the design of the machine during training

Machine model
is optimized 

during training

feature x

severity y

feature x

severity y

1. The machine model is a 
linear function 

2. We can defer some samples 
to humans

Machine model

Machine model
is not optimized 
during training

feature x

severity y Machine model

[De et al., AAAI 2020]

Often called
learning to defer

Next, we will show how to design a ridge 
regression model optimized to operate under 

different automation levels



Ridge regression, revisited
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Machine 
modelTraining samples 

assigned to humans
Training samples 

assigned to machines

Regularization 
parameterTraining Human error 

per sample

Max. number of 
samples that can be 
assigned to humans

[De et al., AAAI 2020]



Ridge regression, revisited
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Machine 
modelTraining samples 

assigned to humans
Training samples 

assigned to machines

Regularization 
parameterTraining Human error 

per sample

Max. number of 
samples that can be 
assigned to humansTest Training samples 

We assign a test sample with features
to humans if

Training samples assigned to humans

Test samples

[De et al., AAAI 2020]



Ridge regression becomes a combinatorial problem
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Given a fixed set     , the optimal machine model is given by  

[De et al., AAAI 2020]



Ridge regression becomes a combinatorial problem
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Given a fixed set     , the optimal machine model is given by  

Then, we can rewrite the ridge regression problem as a purely 
combinatorial maximization problem

[De et al., AAAI 2020]



Ridge regression under human assistance is hard
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Finding the solution to

is a NP-hard problem

[De et al., AAAI 2020]



Ridge regression under human assistance is hard
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Finding the solution to

is a NP-hard problem
Proof sketch

Assume ,              and

k-sparse noise vector

Then, the problem can be viewed as the robust least square (RLSR) problem,
which has been shown to be NP-hard:

[De et al., AAAI 2020]



A simple greedy algorithm
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The greedy algorithm proceeds iteratively.

Points not yet 
assigned to humans

At each iteration, it assigns to a human the sample in the 
training set that provides the largest marginal gain, i.e.,

Does this simple greedy algorithm has 
approximation guarantees? J

[De et al., AAAI 2020]



The greedy algorithm has approximation guarantees
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The function                           satisfies an approximate notion of 
submodularity

We can conclude that the greedy algorithm will find a set
such that Optimal value

where is the generalized curvature

Data dependent constant

for all

[Gatmiry et al., Arxiv 2018]



What samples are outsourced?
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Drusen disease is characterized by pathological yellow spots...
…however, both images are given a score of severity zero

Easy sample
It is assigned to the machine

Difficult sample
It is assigned to the human

[De et al., AAAI 2020]



What samples are outsourced?
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Drusen disease is characterized by pathological yellow spots...
…however, both images are given a score of severity zero

Easy sample
our algorithm assigns it to machine

Difficult sample
our algorithm assigns it to human

This is an anecdotal example
Do these assignments happen consistently?

[De et al., AAAI 2020]



The greedy algorithm spots samples where humans are accurate 
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ρc = 0.2
ρc = 0.4
ρc = 0.6
ρc = 0.8

n (in %) →

M
S
E

→

0.04

0.08

0.12

0.45

10 20 30 40 50 60 70 80 90
0

ρc = 0.2
ρc = 0.4
ρc = 0.6
ρc = 0.8

n (in %) →

M
S
E

→

0.04

0.08

0.12

0.16

0.45

10 20 30 40 50 60 70 80 90
0

Stare-H dataset Stare-D dataset

As long as there are samples that humans can predict with low error, the 
greedy algorithm outsources them to humans and the performance improves

!c: fraction of samples with low human error 

[De et al., AAAI 2020]



Strategic behavior and transparency
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Until now, we have assumed individuals are not strategic:
Individuals do not seek to maximize their benefit

However, this assumption is in conflict with 
the increasing pressure to be transparent
about policies, models and features

Individuals may use knowledge, gained by transparency, 
to invest effort strategically to maximize their chances of 
receiving a beneficial decision.

Can we design transparent ML models 
that account for strategic behavior?



Transparency on predictive models and policies

63

We can be transparent about: 
Predictive models

Policies

Goal: develop accurate predictive models under strategic behavior.
Most work view strategic behavior as gaming.

Goal: design policies that maximize utility under strategic behavior.
Most work view strategic behavior as self-improvement.

[Brückner et al., JMLR 2012; Hardt et al., NIPS 2016; Dong et al., EC 2018; Hu et al., WWW 2019]

[Kleinberg & Raghavan, EC 2019; Khajehnejad et al., Arxiv 2019]



Transparency on predictive models and policies

64

We can be transparent about: 
Predictive models

Policies

Goal: develop accurate predictive models under strategic behavior.
Most work view strategic behavior as gaming.

Goal: design policies that maximize utility under strategic behavior.
Most work view strategic behavior as self-improvement.

[Brückner et al., JMLR 2012; Hardt et al., NIPS 2016; Dong et al., EC 2018; Hu et al., WWW 2019]

[Kleinberg & Raghavan, EC 2019; Khajehnejad et al., Arxiv 2019]



Causal vs non causal features

65

Individual’s strategic behavior as gaming or self-improvement?

Individuals invest effort on 
changing noncausal features

[Miller et al., Arxiv 2019]

Individuals invest effort on 
changing causal features

does not changechanges

“When a measure becomes a target, it ceases 
to be a good measure”

Goodhart's law

changes changes



Causal vs non causal features

66

Individual’s strategic behavior as gaming or self-improvement?

Individuals invest effort on 
changing noncausal features

[Miller et al., Arxiv 2019]

Individuals invest effort on 
changing causal features

does not changechanges

“When a measure becomes a target, it ceases 
to be a good measure”

Goodhart's law

changes changes



Example 1: car insurance decisions
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1. Insurance company reveals it uses the number of 
speeding tickets to decide the insurance premium

2. Drivers may drive more 
carefully to pay a lower price

causal feature
self-improvement

3. This will likely make them 
better drivers



Example 2: loan decisions
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1. A bank reveals it uses credit card debt 
to decide loans interest rates

2. Applicants may avoid credit card debt 
overall to pay less interest

3. This will improve their financial 
situation 

causal feature
self-improvement



Example 3: hiring decisions
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1. A software company publishes the coding 
exercises it uses during recruiting

2. Applicants just practice only those 
coding exercises

3. This will not necessarily make 
them better employees

noncausal feature
gaming



Full transparency: a Stackelberg game
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Stackelberg game-theoretic formulation
The decision maker publishes the decision policy      before
individuals (best-)respond.
For each individual with initial set of features      , her best 
response is:

Cost individual pays for
changing from       to 

Benefit individual 
obtains for having 
features 

We assume

[Khajehnejad et al., Arxiv 2019]



From individual to population best response
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Individual best response

Induced distribution

(Optimal) transportation of mass

[Khajehnejad et al., Arxiv 2019]

Flow between              and



Example 1: original and induced distributions

72
[Khajehnejad et al., Arxiv 2019]
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Example 2: original and induced distributions

73
[Khajehnejad et al., Arxiv 2019]
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Finding optimal decisions is hard
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[Khajehnejad et al., Arxiv 2019]

Finding the solution to

is a NP-hard problem

That makes it hard

Proof idea
Using a reduction to the Boolean satisfiability (SAT) problem [Karp, 1972]



Optimal decisions may be stochastic

75
[Khajehnejad et al., Arxiv 2019]

The NP-hardness result implies that threshold rules are not 
always optimal.

There are many scenarios in which the optimal decision policies 
are not deterministic. For example:

Non-strategic: for all
Strategic:



Highest outcome and negative outcomes

76
[Khajehnejad et al., Arxiv 2019]

Given any instance of the utility maximization problem 
under strategic behavior, it easy to realize that:

where        is the feature value with highest 
outcome

for all        such that

The best individuals always receive a beneficial decision

Always decide negatively about individuals providing
negative utility



Highest outcome and negative outcomes
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[Khajehnejad et al., Arxiv 2019]

Given any instance of the utility maximization problem 
under strategic behavior, it easy to realize that:

where        is the feature value with highest 
outcome

for all        such that

The best individuals always receive a beneficial decision

Always decide negatively about individuals providing
negative utility

What about individuals in the middle range
providing positive utility?



Outcome monotonic costs
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[Hardt et al., NIPS 2016; Hu et al., FAT* 2019]

We can further characterize a family of optimal policies if 
the cost individuals pay to change features satisfies natural 
property, outcome monotonicity, i.e.,

[Improving an individual’s outcome requires increasing amount of effort]

[Worsening an individual’s outcome requires no effort]



Example: outcome monotonic costs

79



Outcome monotonic policies

80
[Khajehnejad et al., Arxiv 2019]

Proposition (positive result!). If costs are outcome monotonic, 
there exists an outcome monotonic policy that is optimal in 
terms of utility.

Better individuals are more likely to
receive a beneficial decision

An outcome monotonic policy satisfies that:

Fair 
property



Outcome monotonic binary policies (I)

81
[Khajehnejad et al., Arxiv 2019]

If costs are additive, there exists an optimal outcome 
monotonic “binary” policy that satisfies that:

c(x4, x3)
c(x2, x1)

Unidimensional features



Outcome monotonic binary policies (II)
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[Khajehnejad et al., Arxiv 2019]

82

c(x4, x3) or c(x5, x3)

c(x2, x1), c(x3, x1), c(x4, x1) or c(x5, x1)

If costs are subadditive, there exists an optimal outcome 
monotonic “binary” policy that satisfies that:

Multidimensional features



An iterative algorithm for general costs
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[Khajehnejad et al., Arxiv 2019]

Fix all.           with 
and find best         

Tractable problem

The iterative algorithm is guaranteed to terminate in 
polynomial time and find a is locally optimal policy



Example: utility under strategic behavior

84
[Khajehnejad et al., Arxiv 2019]
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m

0.0
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Non-Strategic
Strategic (Parallel)
Strategic (Deter.)
Strategic (Iterative) Policies accounting 

for strategic behavior

Optimal policy under 
nonstrategic behavior

Higher is
better

Number of feature values



Beyond full transparency

85

We have assumed the decision maker publishes the entire 
policy.

In practice, it will reveal only part of the policy to each 
individual. For example:

Counterfactual explanations
[Wachter et al., Harvard JL and Tech 2017; Ustun et al., FAT* 2019]

Reveal one example of feature value “close” to 
the original feature value, which would lead to a 
beneficial decision



Beyond full transparency
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We have assumed the decision maker publishes the entire 
policy.

In practice, it will reveal only part of the policy to each 
individual. For example:

Counterfactual explanations
[Wachter et al., Harvard JL and Tech 2017; Ustun et al., FAT* 2019]

Reveal one example of feature value “close” to 
the original feature value, which would lead to a 
beneficial decision

Open problem: find counterfactual 
explanations under strategic behavior
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Balance decisions between human and algorithmic decisions

Account for strategic human decisions

Under a simple problem setting, we have learned about a 
few machine learning models and methods to:

Summary of the lecture

Account for the feedback loop between algorithmic and human decisions

Disclaimer. This was a biased view. These are emerging topics and there is 
still a lot of open problems and research directions! Join us J



Thanks!

more at learning.mpi-sws.org
88


